Comprehensive Evaluation of Supply Voltage Underscaling in FPGA on-Chip Memories
Cita com:
hdl:2117/130486
Document typeConference lecture
Defense date2018-12-13
PublisherIEEE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In this work, we evaluate aggressive undervolting, i.e., voltage scaling below the nominal level to reduce the energy consumption of Field Programmable Gate Arrays (FPGAs). Usually, voltage guardbands are added by chip vendors to ensure the worst-case process and environmental scenarios. Through experimenting on several FPGA architectures, we measure this voltage guardband to be on average 39% of the nominal level, which in turn, delivers more than an order of magnitude power savings. However, further undervolting below the voltage guardband may cause reliability issues as the result of the circuit delay increase, i.e., start to appear faults. We extensively characterize the behavior of these faults in terms of the rate, location, type, as well as sensitivity to environmental temperature, with a concentration of on-chip memories, or Block RAMs (BRAMs). Finally, we evaluate a typical FPGA-based Neural Network (NN) accelerator under low-voltage BRAM operations. In consequence, the substantial NN energy savings come with the cost of NN accuracy loss. To attain power savings without NN accuracy loss, we propose a novel technique that relies on the deterministic behavior of undervolting faults and can limit the accuracy loss to 0.1% without any timing-slack overhead.
CitationSalami, B.; Unsal, O. S.; Cristal, A. Comprehensive Evaluation of Supply Voltage Underscaling in FPGA on-Chip Memories. A: "2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)". IEEE, 2018, p. 724-736.
ISBN978-1-5386-6240-3
Publisher versionhttps://ieeexplore.ieee.org/abstract/document/8574581
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
Comprehensive Evaluation of Supply Voltage.pdf | 1,242Mb | View/Open |