Diagnosis of fluid leaks in pipelines using dynamic PCA?
View/Open
Postprint (951,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/130091
Document typeArticle
Defense date2018-01-01
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this paper, a data-driven system based on PCA is described to detect and quantify fluid leaks in an experimental pipeline. A dynamic PCA implementation (DPCA) was used to capture the process dynamics because the system variables are time-correlated. To detect leaks online, the Hotelling’s T2 statistic and the squared prediction error (SPE) were used as residuals, which are compared against statistically defined thresholds from a set of training data. To determine the number of delays to be included in the DPCA model as well as the number of principal components to be used, a tuning process was executed to find the residual with the optimal number of delays and components that showed the best correlation between the residuals and the leakage size. This allowed the construction of a regression model to estimate the flow rate of the leaks directly from the residual.
CitationSantos, I.; López, F.; Puig, V. Diagnosis of fluid leaks in pipelines using dynamic PCA?. "IFAC-PapersOnLine", 1 Gener 2018, vol. 51, núm. 24, p. 373-380.
ISSN2405-8963
Files | Description | Size | Format | View |
---|---|---|---|---|
WeDT4.6.pdf | Postprint | 951,1Kb | Restricted access |