Show simple item record

dc.contributor.authorGonchenko, Marina
dc.contributor.authorGonchenko, Sergey
dc.contributor.authorOvsyannikov, Ivan
dc.contributor.authorVieiro, Arturo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2019-03-01T08:23:12Z
dc.date.available2019-03-01T08:23:12Z
dc.date.issued2018-04-30
dc.identifier.citationGonchenko, M. [et al.]. On local and global aspects of the 1:4 resonance in the conservative cubic Hénon maps. "Chaos : an interdisciplinary journal of nonlinear science", 30 Abril 2018, vol. 28, núm. 4, p. 043123-1-043123-15.
dc.identifier.issn1054-1500
dc.identifier.urihttp://hdl.handle.net/2117/129971
dc.description.abstractWe study the 1:4 resonance for the conservative cubic Hénon maps C^± with positive and negative cubic terms. These maps show up different bifurcation structures both for fixed points with eigenvalues¿±i and for 4-periodic orbits. While for C^–, the 1:4 resonance unfolding has the so-called Arnold degeneracy [the first Birkhoff twist coefficient equals (in absolute value) to the first resonant term coefficient], the map C^+ has a different type of degeneracy because the resonant term can vanish. In the last case, non-symmetric points are created and destroyed at pitchfork bifurcations and, as a result of global bifurcations, the 1:4 resonant chain of islands rotates by \pi/4. For both maps, several bifurcations are detected and illustrated.
dc.language.isoeng
dc.publisherInstitute of Physics (IOP)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshMathematics
dc.subject.lcshBifurcation theory
dc.subject.otherStrong 1:4 resonance
dc.subject.otherCubic Hénon map
dc.subject.otherBifurcations
dc.subject.other4-periodic orbits
dc.titleOn local and global aspects of the 1:4 resonance in the conservative cubic Hénon maps
dc.typeArticle
dc.subject.lemacMatemàtica
dc.subject.lemacBifurcació, Teoria de la
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.identifier.doi10.1063/1.5022764
dc.rights.accessOpen Access
drac.iddocument23949885
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorGonchenko, M.; Gonchenko, S.; Ovsyannikov, I.; Vieiro, A.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameChaos : an interdisciplinary journal of nonlinear science
upcommons.citation.volume28
upcommons.citation.number4
upcommons.citation.startingPage043123-1
upcommons.citation.endingPage043123-15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain