Vertex-Transitive Graphs That Remain Connected After Failure of a Vertex and Its Neighbors
View/Open
vertex_ftp.pdf (147,7Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2011-06
PublisherWiley InterScience
Rights accessRestricted access - publisher's policy
Abstract
A d-regular graph is said to be superconnected if any disconnecting subset with cardinality at most d is formed by the neighbors of some vertex. A superconnected graph that remains connected after the failure of a vertex and its neighbors will be called vosperian. Let Γ be a vertex-transitive graph of degree d with order at least d+4. We give necessary and sufficient conditions for the vosperianity of Γ. Moreover, assuming that distinct vertices have distinct neighbors, we show that Γ is vosperian if and only if it is superconnected. Let G be a group and let S⊂G\{1} with S=S−1. We show that the Cayley graph, Cay(G, S), defined on G by S is vosperian if and only if G\(S∪{1}) is not a progression and for every non-trivial subgroup H and every a∈G,
If moreover S is aperiodic, then Cay(G, S) is vosperian if and only if it is superconnected.
CitationHamidoune, Y.O.; Llado, A.; López, S.C. Vertex-Transitive Graphs That Remain Connected After Failure of a Vertex and Its Neighbors. "Journal of graph theory", Juny 2011, vol. 67, núm. 2, p. 124-138.
ISSN0364-9024
Files | Description | Size | Format | View |
---|---|---|---|---|
vertex_ftp.pdf![]() | 147,7Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain