Show simple item record

dc.contributor.authorGarde, Ainara
dc.contributor.authorSornmo, Leif
dc.contributor.authorLaguna Lasaosa, Pablo
dc.contributor.authorJané Campos, Raimon
dc.contributor.authorBenito Vales, Salvador
dc.contributor.authorBayés Genis, Antoni
dc.contributor.authorGiraldo Giraldo, Beatriz
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2019-02-27T07:28:09Z
dc.date.available2019-02-27T07:28:09Z
dc.date.issued2017-02-01
dc.identifier.citationGarde, A. [et al.]. Assessment of respiratory flow cycle morphology in patients with chronic heart failure. "Medical and biological engineering and computing", 1 Febrer 2017, vol. 55, núm. 2, p. 245-255.
dc.identifier.issn0140-0118
dc.identifier.urihttp://hdl.handle.net/2117/129784
dc.description.abstractBreathing pattern as periodic breathing (PB) in chronic heart failure (CHF) is associated with poor prognosis and high mortality risk. This work investigates the significance of a number of time domain parameters for characterizing respiratory flow cycle morphology in patients with CHF. Thus, our primary goal is to detect PB pattern and identify patients at higher risk. In addition, differences in respiratory flow cycle morphology between CHF patients (with and without PB) and healthy subjects are studied. Differences between these parameters are assessed by investigating the following three classification issues: CHF patients with PB versus with non-periodic breathing (nPB), CHF patients (both PB and nPB) versus healthy subjects, and nPB patients versus healthy subjects. Twenty-six CHF patients (8/18 with PB/nPB) and 35 healthy subjects are studied. The results show that the maximal expiratory flow interval is shorter and with lower dispersion in CHF patients than in healthy subjects. The flow slopes are much steeper in CHF patients, especially for PB. Both inspiration and expiration durations are reduced in CHF patients, mostly for PB. Using the classification and regression tree technique, the most discriminant parameters are selected. For signals shorter than 1 min, the time domain parameters produce better results than the spectral parameters, with accuracies for each classification of 82/78, 89/85, and 91/89 %, respectively. It is concluded that morphologic analysis in the time domain is useful, especially when short signals are analyzed.
dc.format.extent11 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.lcshHeart failure
dc.subject.lcshRespiration - Measurement
dc.subject.lcshBiomedical engineering
dc.subject.otherChronic heart failure
dc.subject.otherRespiratory pattern
dc.subject.otherPeriodic and non-periodic breathing
dc.subject.otherEnsemble average
dc.titleAssessment of respiratory flow cycle morphology in patients with chronic heart failure
dc.typeArticle
dc.subject.lemacInsuficiència cardíaca
dc.subject.lemacRespiració -- Mesurament
dc.subject.lemacEnginyeria biomèdica
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOSPIN - Biomedical Signal Processing and Interpretation
dc.identifier.doi10.1007/s11517-016-1498-5
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs11517-016-1498-5
dc.rights.accessOpen Access
drac.iddocument19826065
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorGarde, A.; Sornmo, L.; Laguna, P.; Jane, R.; Benito, S.; Bayés-Genis, A.; Giraldo, B.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameMedical and biological engineering and computing
upcommons.citation.volume55
upcommons.citation.number2
upcommons.citation.startingPage245
upcommons.citation.endingPage255


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain