Show simple item record

dc.contributor.authorSiniscalchi Minna, Sara
dc.contributor.authorOcampo-Martínez, Carlos
dc.contributor.authorBianchi, Fernando Daniel
dc.contributor.authorPrada Gil, Mikel de
dc.contributor.authorDe Schutter, Bart
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.contributor.otherInstitut de Recerca en Energía de Catalunya
dc.date.accessioned2019-02-08T13:06:16Z
dc.date.available2019-02-08T13:06:16Z
dc.date.issued2018
dc.identifier.citationSiniscalchi, S. [et al.]. Partitioning approach for large wind farms: active power control for optimizing power reserve. A: IEEE Conference on Decision and Control. "2018 IEEE Conference on Decision and Control (CDC)". IEEE Press, 2018, p. 3183-3188.
dc.identifier.urihttp://hdl.handle.net/2117/128818
dc.description© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractNowadays, large wind farms are expected to guarantee stability of the electrical grid contributing with ancillary services, such as frequency support. To this end, wind farm controllers must set the power generation of each turbine to compensate generation and demand imbalances. With the aim of optimizing primary frequency support, this paper proposes a partitioning approach to split large wind farms into several disjoint subsets of turbines according to the wake propagations through the wind farm. The partitioning problem is solved as a mixed-integer multi-objective optimization problem stated to maximize the strength of the coupling among the turbines due to the wake effect. Thus, no additional information sharing related to the wake propagations needs to be considered between the subsets. Different control tasks are assigned to the local controller of each subset, such that the total power generated meets the power demanded by the grid while the power reserve for enhancing primary frequency support is maximized. Finally, as an application of the proposed model, a decentralized wind farm control strategy is designed and compared with a centralized approach.
dc.format.extent6 p.
dc.language.isoeng
dc.publisherIEEE Press
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.otherautomation
dc.subject.othercontrol theory
dc.subject.otheroptimisation
dc.subject.otherwind farms control
dc.subject.otherpredictive control
dc.subject.otherpartitioning of large-scale systems
dc.titlePartitioning approach for large wind farms: active power control for optimizing power reserve
dc.typeConference report
dc.contributor.groupUniversitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
dc.identifier.doi10.1109/CDC.2018.8619052
dc.description.peerreviewedPeer Reviewed
dc.subject.inspecClassificació INSPEC::Automation
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8619052
dc.rights.accessOpen Access
drac.iddocument23650922
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/675318-INCITE
upcommons.citation.authorSiniscalchi, S.; Ocampo-Martinez, C.A.; Bianchi, F.; de Prada, M.; De Schutter, B.
upcommons.citation.contributorIEEE Conference on Decision and Control
upcommons.citation.publishedtrue
upcommons.citation.publicationNameCDC 2018 - 57th IEEE Conference on Decision and Control
upcommons.citation.startingPage3183
upcommons.citation.endingPage3188


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain