Show simple item record

dc.contributorRodríguez Fonollosa, José Adrián
dc.contributor.authorBlanes Martin, Victor
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2019-02-07T14:08:13Z
dc.date.available2019-02-07T14:08:13Z
dc.date.issued2018-06
dc.identifier.urihttp://hdl.handle.net/2117/128737
dc.description.abstractThis thesis aims to provide a reasonable solution for categorizing automatically sentences into types of toxicity using different types of neural networks. There are six types of categories: Toxic, severe toxic, obscene, threat, insult and identity hate. Three different implementations have been studied to accomplish the objective: LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit) and convolutional neural networks. The thesis is not thought to aim on improving the performance of every individual model but on the comparison between them in terms of natural language processing adequacy. In addition, one differential aspect about this project is the research of LSTM neurons activations and thus the relationship of the words with the final sentence classificatory decision. In conclusion, the three models performed almost equally and the extraction of LSTM activations provided a very accurate and visual understanding of the decisions taken by the network.
dc.description.abstractEsta tesis tiene como objetivo aportar una buena solución para la categorización automática de comentarios abusivos haciendo uso de distintos tipos de redes neuronales. Hay seis categorías: Tóxico, muy tóxico, obsceno, insulto, amenaza y racismo. Se ha hecho una investigación de tres implementaciones para llevar a cabo el objetivo: LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit) y redes convolucionales. El objetivo de este trabajo no es intentar mejorar al máximo el resultado de la clasificación sino hacer una comparación de los 3 modelos para los mismos parámetros e intentar saber cuál funciona mejor para este caso de procesado de lenguaje. Además, un aspecto diferencial de este proyecto es la investigación sobre las activaciones de las neuronas en el modelo LSTM y su relación con la importancia de las palabras respecto a la clasificación final de la frase. En conclusión, los tres modelos han funcionado de forma casi idéntica y la extracción de las activaciones han proporcionado un conocimiento muy preciso y visual de las decisiones tomadas por la red.
dc.description.abstractAquesta tesi té com a objectiu aportar una bona solució per categoritzar automàticament comentaris abusius usant diferents tipus de xarxes neuronals. Hi ha sis tipus de categories: Tòxic, molt tòxic, obscè, insult, amenaça i racisme. S'ha fet una recerca de tres implementacions per dur a terme l'objectiu: LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit) i xarxes convolucionals. L'objectiu d'aquest treball no és intentar millorar al màxim els resultats de classificació sinó fer una comparació dels 3 models pels mateixos paràmetres per tal d'esbrinar quin funciona millor en aquest cas de processat de llenguatge. A més, un aspecte diferencial d'aquest projecte és la recerca sobre les activacions de les neurones al model LSTM i la seva relació amb la importància de les paraules respecte la classificació final de la frase. En conclusió, els tres models han funcionat gairebé idènticament i l'extracció de les activacions van proporcionar un enteniment molt acurat i visual de les decisions preses per la xarxa.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsS'autoritza la difusió de l'obra mitjançant la llicència Creative Commons o similar 'Reconeixement-NoComercial- SenseObraDerivada'
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació
dc.subject.lcshNatural language processing (Computer science)
dc.subject.lcshWeb sites
dc.subject.lcshNeural networks (Computer science)
dc.subject.otherNLP
dc.subject.otherCNN
dc.subject.otherRNN
dc.subject.otherLSTM
dc.titleToxic comment classification using convolutional and recurrent neural networks
dc.typeBachelor thesis
dc.subject.lemacTractament del llenguatge natural (Informàtica)
dc.subject.lemacPàgines web
dc.subject.lemacXarxes neuronals (Informàtica)
dc.identifier.slugETSETB-230.135055
dc.rights.accessOpen Access
dc.date.updated2019-01-18T06:50:37Z
dc.audience.educationlevelGrau
dc.audience.mediatorEscola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain