Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.060 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Activities and coefficients of the Tutte polynomial

Thumbnail
View/Open
memoria.pdf (574,0Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/128027

Show full item record
Hakim, Sahar
Tutor / directorMier Vinué, Anna deMés informacióMés informacióMés informació
Document typeMaster thesis
Date2019-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Matroids are combinatorial objects that capture abstractly the essence of dependence. The Tutte polynomial, defined for matroids and graphs, has a numerous amount of information about these structures. In this thesis, we will introduce matroids, define them and give the most important properties they have. Then we will define the Tutte polynomial and give interesting results found in this area of research. After that we will start interpreting Tutte coefficients. First we will discuss about some specific Tutte coefficients and the relation between Tutte coefficients and parallel and series classes in a matroid. These relations were found recently for graphs, and we worked out in applying them for matroids and adding to the given results. Then we will discuss will be about a theorem linking matroid connectivity and the coefficient of x, where we have also our contribution in proving it using the activities. Finally, we will introduce Brylawski's equations. We will discuss the proof of two cases of this equation. The proof of the second equation in this section is a result of our work on this thesis.
SubjectsCombinatorial analysis, Combinacions (Matemàtica)
DegreeMÀSTER UNIVERSITARI EN MATEMÀTICA AVANÇADA I ENGINYERIA MATEMÀTICA (Pla 2010)
URIhttp://hdl.handle.net/2117/128027
Collections
  • Màsters oficials - Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME) [263]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdf574,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina