Analysis of cardiorespiratory interaction in patients submitted to the T-tube test in the weaning process implementing symbolic dynamics and neural networks
View/Open
08396175.pdf (385,9Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/127803
Document typeConference report
Defense date2018
Rights accessRestricted access - publisher's policy
This work is protected by the corresponding intellectual and industrial property rights.
Except where otherwise noted, its contents are licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The determination of the optimal time of the patients in weaning trial process from Mechanical Ventilation (MV), between patients capable of maintaining spontaneous breathing and patients that fail to maintain spontaneous breathing, is a very important task in intensive care unit. Symbolic Dynamic (SD) and Neural Networks (NN) techniques were applied in order to develop a classifier for the study of patients on weaning trial process. The respiratory pattern of each patient was characterized through different time series. In order to reduce the dimensionality of the system Forward Selection is implemented, obtaining a classification performance result of 85,96 ±6,26% with 64 variables differentiating between 3 classes analyzed at same time. © 2018 IEEE.
CitationArizmendi, C. [et al.]. Analysis of cardiorespiratory interaction in patients submitted to the T-tube test in the weaning process implementing symbolic dynamics and neural networks. A: International Conference on Artificial Intelligence and Big Data, ICAIBD 2018. "2018 International Conference on Artificial Intelligence and Big Data, ICAIBD 2018". 2018, p. 101-105.
ISBN978-153866987-7
Publisher versionhttps://ieeexplore.ieee.org/document/8396175
Files | Description | Size | Format | View |
---|---|---|---|---|
08396175.pdf![]() | 385,9Kb | Restricted access |