An immersed boundary method to conjugate heat transfer problems in complex geometries. Application to an automotive antenna

View/Open
Cita com:
hdl:2117/127620
Document typeArticle
Defense date2019-02-05
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Considering that the most common reason for electronic component failure is the excessive temperature level, an efficient thermal management design can prolong the operating life of the equipment, while also increasing its performance. Computational Fluid Dynamics and Heat Transfer (CFD&HT) have proved valuable in the study of these problems, since they can produce reliable fields of fluid flow, temperature and heat fluxes. Moreover, thanks to the recent advances in high-performance computers, CFD&HT numerical simulations are becoming viable tools to study real problems. The conventional approach, which consists of employing body-conformal meshes to the solids and fluids regions, often results costly and ineffective in applications with very complex geometries and large deformation. For these cases, an alternative approach, the Immersed Boundary Method (IBM), which employs a non-body conformal mesh and discretizes the entire domain using a special treatment in the vicinity of the solid-fluid interfaces, has proven more effective. In this work, an IBM was extended to simulate problems with conjugate heat transfer (CHT) boundary conditions taking into account the radiative exchange between surfaces. It was designed to work with any type of mesh (domain discretization) and to handle any body geometry. The implementation was validated and verified by several simulations of benchmark cases. Moreover, the IBM was applied in an industrial application which consists of the simulation of a Smart Antenna Module (SAM). All in all, the carried out studies resulted in a monolithic methodology for the simulation of realistic situations, where all three heat transfer mechanisms can be considered in complex geometries.
CitationFavre, F. [et al.]. An immersed boundary method to conjugate heat transfer problems in complex geometries. Application to an automotive antenna. "Applied thermal engineering", 5 Febrer 2019, vol. 148, p. 907-928.
ISSN1359-4311
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S1359431118350087