Accelerating K-mer Frequency Counting with GPU and Non-Volatile Memory

Cita com:
hdl:2117/127558
Document typeConference report
Defense date2018
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectHi-EST - Holistic Integration of Emerging Supercomputing Technologies (EC-H2020-639595)
COMPUTACION DE ALTAS PRESTACIONES VII (MINECO-TIN2015-65316-P)
BARCELONA SUPERCOMPUTING CENTER - CENTRO. NACIONAL DE SUPERCOMPUTACION (MINECO-SEV-2015-0493)
COMPUTACION DE ALTAS PRESTACIONES VII (MINECO-TIN2015-65316-P)
BARCELONA SUPERCOMPUTING CENTER - CENTRO. NACIONAL DE SUPERCOMPUTACION (MINECO-SEV-2015-0493)
Abstract
The emergence of Next Generation Sequencing (NGS) platforms has increased the throughput of genomic sequencing and in turn the amount of data that needs to be processed, requiring highly efficient computation for its analysis. In this context, modern architectures including accelerators and non-volatile memory are essential to enable the mass exploitation of these bioinformatics workloads. This paper presents a redesign of the main component of a state-of-the-art reference-free method for variant calling, SMUFIN, which has been adapted to make the most of GPUs and NVM devices. SMUFIN relies on counting the frequency of k-mers (substrings of length k) in DNA sequences, which also constitutes a well-known problem for many bioinformatics workloads, such as genome assembly. We propose techniques to improve the efficiency of k-mer counting and to scale-up workloads like SMUFIN that used to require 16 nodes of Marenostrum 3 to a single machine with a GPU and NVM drives. Results show that although the single machine is not able to improve the time to solution of 16 nodes, its CPU time is 7.5x shorter than the aggregate CPU time of the 16 nodes, with a reduction in energy consumption of 5.5x. © 2017 IEEE.
CitationCadenelli, N.; Polo, J.; Carrera, D. Accelerating K-mer Frequency Counting with GPU and Non-Volatile Memory. A: IEEE International Performance Computing and Communications Conference. "Proceedings - 2017 IEEE 19th Intl Conference on High Performance Computing and Communications, HPCC 2017, 2017 IEEE 15th Intl Conference on Smart City, SmartCity 2017 and 2017 IEEE 3rd Intl Conference on Data Science and Systems, DSS 2017". 2018, p. 434-441.
ISBN978-153862588-0
Other identifiershttps://arxiv.org/pdf/1712.03254.pdf
Collections
- CAP - Grup de Computació d'Altes Prestacions - Ponències/Comunicacions de congressos [784]
- Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [1.875]
- Departament d'Enginyeria Electrònica - Ponències/Comunicacions de congressos [1.667]
- GRUP ISI - Grup d'Instrumentació, sensors i interfícies - Ponències/Comunicacions de congressos [70]
Files | Description | Size | Format | View |
---|---|---|---|---|
NcilaCadenelli_ Accelerating.pdf | 495,5Kb | View/Open |