Show simple item record

dc.contributor.authorMarchena Angos, Miquel
dc.contributor.authorEchebarría Domínguez, Blas
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2019-01-24T14:35:56Z
dc.date.available2019-01-24T14:35:56Z
dc.date.issued2018-12-10
dc.identifier.citationMarchena, M.; Echebarria, B. Computational Model of Calcium Signaling in Cardiac Atrial Cells at the Submicron Scale. "Frontiers in Physiology", 10 Desembre 2018, vol. 9, p. 1-14.
dc.identifier.issn1664-042X
dc.identifier.urihttp://hdl.handle.net/2117/127552
dc.description.abstractIn cardiac cells, calcium is the mediator of excitation-contraction coupling. Dysfunctions in calcium handling have been identified as the origin of some cardiac arrhythmias. In the particular case of atrial myocytes, recent available experimental data has found links between these dysfunctions and structural changes in the calcium handling machinery (ryanodine cluster size and distribution, t-tubular network, etc). To address this issue, we have developed a computational model of an atrial myocyte that takes into account the detailed intracellular structure. The homogenized macroscopic behavior is described with a two-concentration field model, using effective diffusion coefficients of calcium in the sarcoplasmic reticulum (SR) and in the cytoplasm. The model reproduces the right calcium transients and dependence with pacing frequency. Under basal conditions, the calcium rise is mostly restricted to the periphery of the cell, with a large concentration ratio between the periphery and the interior. We have then studied the dependence of the speed of the calcium wave on cytosolic and SR diffusion coefficients, finding an almost linear relation with the former, in agreement with a diffusive and fire mechanism of propagation, and little dependence on the latter. Finally, we have studied the effect of a change in RyR cluster microstructure. We find that, under resting conditions, the spark frequency decreases slightly with RyR cluster spatial dispersion, but markedly increases when the RyRs are distributed in clusters of larger size, stressing the importance of RyR cluster organization to understand atrial arrhythmias, as recent experimental results suggest (Macquaide et al., 2015).
dc.format.extent14 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica
dc.subject.lcshCalcium -- Physiological transport.
dc.subject.lcshCardiology
dc.subject.othercalcium modeling
dc.subject.otheratrial cells
dc.subject.otherlocal calcium signaling
dc.subject.othercalcium release unit
dc.subject.otherryanodine receptor
dc.titleComputational Model of Calcium Signaling in Cardiac Atrial Cells at the Submicron Scale
dc.typeArticle
dc.subject.lemacCalci -- Transport fisiològic
dc.subject.lemacCardiologia
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos
dc.identifier.doi10.3389/fphys.2018.01760
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fphys.2018.01760/full
dc.rights.accessOpen Access
drac.iddocument23634017
dc.description.versionPostprint (published version)
upcommons.citation.authorMarchena, M.; Echebarria, B.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameFrontiers in Physiology
upcommons.citation.volume9
upcommons.citation.startingPage1
upcommons.citation.endingPage14


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain