Show simple item record

dc.contributor.authorPérez Cervera, Alberto
dc.contributor.authorHuguet Casades, Gemma
dc.contributor.authorMartínez-Seara Alonso, M. Teresa
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2019-01-23T09:04:28Z
dc.date.available2021-01-01T01:32:56Z
dc.date.issued2018
dc.identifier.citationPerez, A., Huguet, G., Martinez-seara, T. Computation of invariant curves in the analysis of periodically forced neural oscillators. A: "Nonlinear systems, Vol 2. nonlinear phenomena in biology, optics and condensed matter.". Berlín: Springer, 2018, p. 63-81.
dc.identifier.isbn978-3-319-72218-4
dc.identifier.urihttp://hdl.handle.net/2117/127401
dc.description.abstractBackground oscillations, reflecting the excitability of neurons, are ubiq- uitous in the brain. Some studies have conjectured that when spikes sent by one population reach the other population in the peaks of excitability, then informa- tion transmission between two oscillating neuronal groups is more effective. In this context, phase locking relationships between oscillating neuronal populations may have implications in neuronal communication as they assure synchronous activity between brain areas. To study this relationship, we consider a population rate model and perturb it with a time-dependent input. We use the stroboscopic map and apply powerful computational methods to compute the invariant objects and their bifur- cations as the perturbation parameters (frequency and amplitude) are varied. The analysis performed shows the relationship between the appearance of synchronous and asynchronous regimes and the invariant objects of the stroboscopic map.
dc.format.extent19 p.
dc.language.isoeng
dc.publisherSpringer
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshDifferentiable dynamical systems
dc.subject.lcshNeurosciences
dc.subject.otherSynchronization
dc.subject.otherphase locking
dc.subject.otherstroboscopic map
dc.subject.otherinvariant curves
dc.subject.otherrotation number
dc.titleComputation of invariant curves in the analysis of periodically forced neural oscillators
dc.typePart of book or chapter of book
dc.subject.lemacNeurociències
dc.subject.lemacSistemes dinàmics diferenciables
dc.contributor.groupUniversitat Politècnica de Catalunya. SD - Sistemes Dinàmics de la UPC
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.springer.com/us/book/9783319722177
dc.rights.accessOpen Access
local.identifier.drac23564628
dc.description.versionPostprint (author's final draft)
local.citation.authorPerez, A.; Huguet, G.; Martinez-seara, Tere
local.citation.pubplaceBerlín
local.citation.publicationNameNonlinear systems, Vol 2. nonlinear phenomena in biology, optics and condensed matter.
local.citation.startingPage63
local.citation.endingPage81


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain