dc.contributor.author | Casamitjana Díaz, Adrià |
dc.contributor.author | Petrone, Paula |
dc.contributor.author | Tucholka, Alan |
dc.contributor.author | Falcón, Carlos |
dc.contributor.author | Skouras, Stavros |
dc.contributor.author | Molinuevo, José Luis |
dc.contributor.author | Vilaplana Besler, Verónica |
dc.contributor.author | Gispert, Juan Domingo |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions |
dc.date.accessioned | 2019-01-22T11:50:35Z |
dc.date.available | 2019-01-22T11:50:35Z |
dc.date.issued | 2018 |
dc.identifier.citation | Casamitjana, A., Petrone, P., Tucholka, A., Falcón, C., Skouras, S., Molinuevo, J., Vilaplana, V., Gispert, J. MRI-based screening of preclinical Alzheimer's disease for prevention clinical trials. "Journal Alzheimer's disease", 2018, vol. 64, núm. 4, p. 1099-1112. |
dc.identifier.issn | 1875-8908 |
dc.identifier.uri | http://hdl.handle.net/2117/127331 |
dc.description | The final publication is available at IOS Press through http://dx.doi.org/10.3233/JAD-180299”. |
dc.description.abstract | The identification of healthy individuals harboring amyloid pathology represents one important challenge for secondary prevention clinical trials in Alzheimer’s disease (AD). Consequently, noninvasive and cost-efficient techniques to detect preclinical AD constitute an unmet need of critical importance. In this manuscript, we apply machine learning to structural MRI (T1 and DTI) of 96 cognitively normal subjects to identify amyloid-positive ones. Models were trained on public ADNI data and validated on an independent local cohort. Used for subject classification in a simulated clinical trial setting, the proposed method is able to save 60% of unnecessary CSF/PET tests and to reduce 47% of the cost of recruitment. This recruitment strategy capitalizes on available MR scans to reduce the overall amount of invasive PET/CSF tests in prevention trials, demonstrating a potential value as a tool for preclinical AD screening. This protocol could foster the development of secondary prevention strategies for AD. |
dc.format.extent | 14 p. |
dc.language.iso | eng |
dc.publisher | IOS Press |
dc.subject | Àrees temàtiques de la UPC::Ciències de la salut::Medicina |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic |
dc.subject.lcsh | Machine learning |
dc.subject.lcsh | Alzheimer's disease |
dc.subject.other | Amyloid pathology |
dc.subject.other | Clinical trial |
dc.subject.other | Machine learning |
dc.subject.other | Preclinical Alzheimer’s disease |
dc.subject.other | Screening |
dc.subject.other | Secondaryprevention |
dc.title | MRI-based screening of preclinical Alzheimer's disease for prevention clinical trials |
dc.type | Article |
dc.subject.lemac | Aprenentatge automàtic |
dc.subject.lemac | Alzheimer, Malaltia d' |
dc.contributor.group | Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo |
dc.identifier.doi | 10.3233/JAD-180299 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://content.iospress.com/journals/journal-of-alzheimers-disease/64/4 |
dc.rights.access | Open Access |
local.identifier.drac | 23571613 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Casamitjana, A.; Petrone, P.; Tucholka, A.; Falcón, C.; Skouras, S.; Molinuevo, J.; Vilaplana, V.; Gispert, J. |
local.citation.publicationName | Journal Alzheimer's disease |
local.citation.volume | 64 |
local.citation.number | 4 |
local.citation.startingPage | 1099 |
local.citation.endingPage | 1112 |