Show simple item record

dc.contributor.authorCasamitjana Díaz, Adrià
dc.contributor.authorPetrone, Paula
dc.contributor.authorTucholka, Alan
dc.contributor.authorFalcón, Carlos
dc.contributor.authorSkouras, Stavros
dc.contributor.authorMolinuevo, José Luis
dc.contributor.authorVilaplana Besler, Verónica
dc.contributor.authorGispert, Juan Domingo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2019-01-22T11:50:35Z
dc.date.available2019-01-22T11:50:35Z
dc.date.issued2018
dc.identifier.citationCasamitjana, A., Petrone, P., Tucholka, A., Falcón, C., Skouras, S., Molinuevo, J., Vilaplana, V., Gispert, J. MRI-based screening of preclinical Alzheimer's disease for prevention clinical trials. "Journal Alzheimer's disease", 2018, vol. 64, núm. 4, p. 1099-1112.
dc.identifier.issn1875-8908
dc.identifier.urihttp://hdl.handle.net/2117/127331
dc.descriptionThe final publication is available at IOS Press through http://dx.doi.org/10.3233/JAD-180299”.
dc.description.abstractThe identification of healthy individuals harboring amyloid pathology represents one important challenge for secondary prevention clinical trials in Alzheimer’s disease (AD). Consequently, noninvasive and cost-efficient techniques to detect preclinical AD constitute an unmet need of critical importance. In this manuscript, we apply machine learning to structural MRI (T1 and DTI) of 96 cognitively normal subjects to identify amyloid-positive ones. Models were trained on public ADNI data and validated on an independent local cohort. Used for subject classification in a simulated clinical trial setting, the proposed method is able to save 60% of unnecessary CSF/PET tests and to reduce 47% of the cost of recruitment. This recruitment strategy capitalizes on available MR scans to reduce the overall amount of invasive PET/CSF tests in prevention trials, demonstrating a potential value as a tool for preclinical AD screening. This protocol could foster the development of secondary prevention strategies for AD.
dc.format.extent14 p.
dc.language.isoeng
dc.publisherIOS Press
dc.subjectÀrees temàtiques de la UPC::Ciències de la salut::Medicina
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subject.lcshMachine learning
dc.subject.lcshAlzheimer's disease
dc.subject.otherAmyloid pathology
dc.subject.otherClinical trial
dc.subject.otherMachine learning
dc.subject.otherPreclinical Alzheimer’s disease
dc.subject.otherScreening
dc.subject.otherSecondaryprevention
dc.titleMRI-based screening of preclinical Alzheimer's disease for prevention clinical trials
dc.typeArticle
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacAlzheimer, Malaltia d'
dc.contributor.groupUniversitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
dc.identifier.doi10.3233/JAD-180299
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://content.iospress.com/journals/journal-of-alzheimers-disease/64/4
dc.rights.accessOpen Access
local.identifier.drac23571613
dc.description.versionPostprint (author's final draft)
local.citation.authorCasamitjana, A.; Petrone, P.; Tucholka, A.; Falcón, C.; Skouras, S.; Molinuevo, J.; Vilaplana, V.; Gispert, J.
local.citation.publicationNameJournal Alzheimer's disease
local.citation.volume64
local.citation.number4
local.citation.startingPage1099
local.citation.endingPage1112


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record