Show simple item record

dc.contributorDelicado Useros, Pedro Francisco
dc.contributor.authorPachón García, Cristian
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.description.abstractWe present a set of algorithms for Multidimensional Scaling (MDS) to be used with large datasets. MDS is a statistic tool for reduction of dimensionality, using as input a distance matrix of dimensions n x n. When n is large, classical algorithms suffer from computational problems and MDS configuration can not be obtained. In this thesis we address these problems by means of three algorithms: Divide and Conquer MDS, Fast MDS and MDS based on Gower interpolation. The main idea of these methods is based on partitioning the dataset into small pieces, where classical methods can work. In order to check the performance of the algorithms as well as to compare them, we do a simulation study. This study points out that Fast MDS and MDS based on Gower interpolation are appropriated to use when n is large and Divide and Conquer MDS is the best method that captures the variance of the original data.
dc.publisherUniversitat Politècnica de Catalunya
dc.publisherUniversitat de Barcelona
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica::Anàlisi multivariant
dc.subject.lcshMultivariate analysis
dc.subject.otherMultidimensional Scaling
dc.subject.otherBig Data
dc.subject.otherRecursive Programming
dc.titleMultidimensional scaling for Big Data
dc.typeMaster thesis
dc.subject.lemacAnàlisi multivariable
dc.subject.amsClassificació AMS::62 Statistics::62H Multivariate analysis
dc.rights.accessOpen Access
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain