Show simple item record

dc.contributor.authorKollepara, Kiran Sagar
dc.contributor.authorMulye, Paris D.
dc.contributor.authorSáez Viñas, Pablo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2019-01-22T10:19:12Z
dc.date.issued2018-12
dc.identifier.citationKollepara, K. S., Mulye, P. D., Saez, P. Fully coupled numerical model of actin treadmilling in the lamellipodium of the cell. "International journal for numerical methods in biomedical engineering - Online", Desembre 2018, vol. 34, núm. 12, p. 1-21.
dc.identifier.issn2040-7947
dc.identifier.urihttp://hdl.handle.net/2117/127304
dc.descriptionThis is the peer reviewed version of the following article: Kollepara, K. S., Mulye, P. D., Saez, P. Fully coupled numerical model of actin treadmilling in the lamellipodium of the cell. "International journal for numerical methods in biomedical engineering - Online", Desembre 2018, vol. 34, núm. 12, p. 1-21, which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3143. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
dc.description.abstractCells rely on an interplay of subcellular elements for motility and migration. Certain regions of motile cells, such as the lamellipodium, are made of a complex mixture of actin monomers and filaments, which polymerize at the front of the cell, close to the cell membrane, and depolymerize at the rear. The dynamic actin turnover induces the so-called intracellular retrograde flow, and it is a fundamental process for cell motility. Apart from some comprehensive mathematical models, the computational modelling of actin treadmilling has been based on simpler biophysical models. Here, we adopt a highly detailed theoretical model of the actin treadmilling process and develop a coupled unsteady finite element formulation. We clearly describe the structure and implementation of the coupled problem within the finite element method. Our numerical results show an excellent correlation with experimental results from literature and with previous models. We include time dependent effects and convective transport terms, which expose puzzling dynamics in the retrograde flow. We propose several biological scenarios to analyze the behavior of the actin treadmilling along space and time. We observed response times of the main density variables in the order of seconds. Compared with previous analytical solutions, which make assumptions related to convective transport, transient dynamics, and actin fluxes, the generic solution can have significant influence on the retrograde flow. All together, our results unveil a promising applicability of classical finite element methods to derive an in silico testing platform for the actin treadmilling processes in motile cells, which could allow for an extension to other biophysical effects.
dc.format.extent21 p.
dc.language.isoeng
dc.publisherJohn Wiley & sons
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshNumerical analysis
dc.subject.otherCellular physics
dc.subject.otherActin Treadmilling
dc.subject.otherFinite Element Method
dc.subject.otherCoupled-problems
dc.titleFully coupled numerical model of actin treadmilling in the lamellipodium of the cell
dc.typeArticle
dc.subject.lemacAnàlisi numèrica
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1002/cnm.3143
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::65 Numerical analysis::65L Ordinary differential equations
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3143
dc.rights.accessRestricted access - publisher's policy
drac.iddocument23501424
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/DPI2016-74929-R
dc.date.lift2019-12-01
upcommons.citation.authorKollepara, K. S., Mulye, P. D., Saez, P.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameInternational journal for numerical methods in biomedical engineering - Online
upcommons.citation.volume34
upcommons.citation.number12
upcommons.citation.startingPage1
upcommons.citation.endingPage21


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder