Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines
Ver/Abrir
Estadisticas de LA Referencia / Recolecta
Incluye datos de uso desde 2022
Cita com:
hdl:2117/127201
Tipo de documentoTexto en actas de congreso
Fecha de publicación2018
Condiciones de accesoAcceso abierto
Todos los derechos reservados. Esta obra
está protegida por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales
existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la
autorización del titular de los derechos
Resumen
Condition-based maintenance plays an important role to ensure the working condition and to increase the availability of the machinery. The feature calculation and feature extraction are critical signal processing that allow to obtain a high-performance characterization of the available physical magnitudes related to specific working conditions of machines. Aiming to overcome this issue, this research proposes a novel condition monitoring strategy based on the spectral energy estimation and Linear Discriminant Analysis for diagnose and identify different operating conditions in an induction motor-based electromechanical system. The proposed method involves the acquisition of vibration signals from which the frequency spectrum is computed through the Fast Fourier Transform. Subsequently, such frequency spectrum is segmented to estimate a feature matrix in terms of its spectral energy. Finally, the feature matrix is subjected to a transformation into a 2-dimentional base by means of the Linear Discriminant Analysis and the final diagnosis outcome is performed by a NN-based classifier. The proposed strategy is validated under a complete experimentally dataset acquired from a laboratory electromechanical system.
CitaciónRamirez, M., Saucedo, J., Romero, R., Osornio, R., Morales, L., Delgado Prieto, M. Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines. A: IEEE International Autumn Meeting on Power, Electronics and Computing. "ROPEC 2018: XX IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING". 2018.
ISBN978-1-5386-5935-9
Otros identificadoreshttps://easychair.org/smart-program/ROPEC2018/2018-11-16.html#talk:85169
Ficheros | Descripción | Tamaño | Formato | Ver |
---|---|---|---|---|
ROPEC2018_PAPER187.pdf | Artículo principal | 1,113Mb | Ver/Abrir |