Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.042 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Electrònica
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Electrònica
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines

Thumbnail
View/Open
Artículo principal (1,113Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/127201

Show full item record
Ramirez Chavez, Mayra
Saucedo Dorantes, Juan Jose
Romero Troncoso, René
Osornio Rios, Roque A.
Morales Velazquez, Luis
Delgado Prieto, MiquelMés informacióMés informacióMés informació
Document typeConference report
Defense date2018
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Condition-based maintenance plays an important role to ensure the working condition and to increase the availability of the machinery. The feature calculation and feature extraction are critical signal processing that allow to obtain a high-performance characterization of the available physical magnitudes related to specific working conditions of machines. Aiming to overcome this issue, this research proposes a novel condition monitoring strategy based on the spectral energy estimation and Linear Discriminant Analysis for diagnose and identify different operating conditions in an induction motor-based electromechanical system. The proposed method involves the acquisition of vibration signals from which the frequency spectrum is computed through the Fast Fourier Transform. Subsequently, such frequency spectrum is segmented to estimate a feature matrix in terms of its spectral energy. Finally, the feature matrix is subjected to a transformation into a 2-dimentional base by means of the Linear Discriminant Analysis and the final diagnosis outcome is performed by a NN-based classifier. The proposed strategy is validated under a complete experimentally dataset acquired from a laboratory electromechanical system.
CitationRamirez, M., Saucedo, J., Romero, R., Osornio, R., Morales, L., Delgado Prieto, M. Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines. A: IEEE International Autumn Meeting on Power, Electronics and Computing. "ROPEC 2018: XX IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING". 2018. 
URIhttp://hdl.handle.net/2117/127201
ISBN978-1-5386-5935-9
Other identifiershttps://easychair.org/smart-program/ROPEC2018/2018-11-16.html#talk:85169
Collections
  • Departament d'Enginyeria Electrònica - Ponències/Comunicacions de congressos [1.816]
  • MCIA - Motion Control and Industrial Applications Research Group - Ponències/Comunicacions de congressos [139]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
ROPEC2018_PAPER187.pdfArtículo principal1,113MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina