dc.contributor.author | Cariño Corrales, Jesús Adolfo |
dc.contributor.author | Delgado Prieto, Miquel |
dc.contributor.author | Iglesias Martínez, José Antonio |
dc.contributor.author | Sanchís, Araceli |
dc.contributor.author | Zurita Millán, Daniel |
dc.contributor.author | Millan, Marta |
dc.contributor.author | Ortega Redondo, Juan Antonio |
dc.contributor.author | Romero Troncoso, René |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.date.accessioned | 2019-01-18T12:24:32Z |
dc.date.available | 2019-01-18T12:24:32Z |
dc.date.issued | 2018-09-03 |
dc.identifier.citation | Cariño, J. A., Delgado Prieto, M., Iglesias, J. A., Sanchís, A., Zurita, D., Millan, M., Ortega, J.A., Romero, R. Fault detection and identification methodology under an incremental learning framework applied to industrial machinery. "IEEE access", 3 Setembre 2018, vol. 6, p. 49755-49766. |
dc.identifier.issn | 2169-3536 |
dc.identifier.uri | http://hdl.handle.net/2117/127199 |
dc.description.abstract | An industrial machinery condition monitoring methodology based on ensemble novelty detection and evolving classification is proposed in this study. The methodology contributes to solve current challenges dealing with classical electromechanical system monitoring approaches applied in industrial frameworks, that is, the presence of unknown events, the limitation to the nominal healthy condition as starting knowledge, and the incorporation of new patterns to the available knowledge. The proposed methodology is divided into four main stages: 1) a dedicated feature calculation and reduction over available physical magnitudes to increase novelty detection and fault classification capabilities; 2) a novelty detection based on the ensemble of one-class support vector machines to identify not previously considered events; 3) a diagnosis by means of eClass evolving classifiers for patterns recognition; and 4) re-training to include new patterns to the novelty detection and fault identification models. The effectiveness of the proposed fault detection and identification methodology has been compared with classical approaches, and verified by experimental results obtained from an automotive end-of-line test machine. |
dc.format.extent | 12 p. |
dc.language.iso | eng |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) |
dc.subject | Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Reconeixement de formes |
dc.subject.lcsh | Pattern recognition systems |
dc.subject.lcsh | Machinery in the workplace |
dc.subject.lcsh | Fault tolerance (Engineering) |
dc.subject.other | Condition Monitoring |
dc.subject.other | fault diagnosis |
dc.subject.other | industry applications |
dc.subject.other | machine learning |
dc.title | Fault detection and identification methodology under an incremental learning framework applied to industrial machinery |
dc.type | Article |
dc.subject.lemac | Reconeixement de formes (Informàtica) |
dc.subject.lemac | Maquinària en la indústria |
dc.subject.lemac | Tolerància als errors (Enginyeria) |
dc.contributor.group | Universitat Politècnica de Catalunya. MCIA - Motion Control and Industrial Applications Research Group |
dc.identifier.doi | 10.1109/ACCESS.2018.2868430 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8454453 |
dc.rights.access | Open Access |
local.identifier.drac | 23369847 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/AGAUR/2PE/2014SGR101 |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO/2PE/TRA2016-80472-R |
local.citation.author | Cariño, J. A.; Delgado Prieto, M.; Iglesias, J. A.; Sanchís, A.; Zurita, D.; Millan, M.; Ortega, J.A.; Romero, R. |
local.citation.publicationName | IEEE access |
local.citation.volume | 6 |
local.citation.startingPage | 49755 |
local.citation.endingPage | 49766 |