Show simple item record

dc.contributor.authorCariño Corrales, Jesús Adolfo
dc.contributor.authorDelgado Prieto, Miquel
dc.contributor.authorIglesias Martínez, José Antonio
dc.contributor.authorSanchís, Araceli
dc.contributor.authorZurita Millán, Daniel
dc.contributor.authorMillan, Marta
dc.contributor.authorOrtega Redondo, Juan Antonio
dc.contributor.authorRomero Troncoso, René
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2019-01-18T12:24:32Z
dc.date.available2019-01-18T12:24:32Z
dc.date.issued2018-09-03
dc.identifier.citationCariño, J. A., Delgado Prieto, M., Iglesias, J. A., Sanchís, A., Zurita, D., Millan, M., Ortega, J.A., Romero, R. Fault detection and identification methodology under an incremental learning framework applied to industrial machinery. "IEEE access", 3 Setembre 2018, vol. 6, p. 49755-49766.
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/2117/127199
dc.description.abstractAn industrial machinery condition monitoring methodology based on ensemble novelty detection and evolving classification is proposed in this study. The methodology contributes to solve current challenges dealing with classical electromechanical system monitoring approaches applied in industrial frameworks, that is, the presence of unknown events, the limitation to the nominal healthy condition as starting knowledge, and the incorporation of new patterns to the available knowledge. The proposed methodology is divided into four main stages: 1) a dedicated feature calculation and reduction over available physical magnitudes to increase novelty detection and fault classification capabilities; 2) a novelty detection based on the ensemble of one-class support vector machines to identify not previously considered events; 3) a diagnosis by means of eClass evolving classifiers for patterns recognition; and 4) re-training to include new patterns to the novelty detection and fault identification models. The effectiveness of the proposed fault detection and identification methodology has been compared with classical approaches, and verified by experimental results obtained from an automotive end-of-line test machine.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Reconeixement de formes
dc.subject.lcshPattern recognition systems
dc.subject.lcshMachinery in the workplace
dc.subject.lcshFault tolerance (Engineering)
dc.subject.otherCondition Monitoring
dc.subject.otherfault diagnosis
dc.subject.otherindustry applications
dc.subject.othermachine learning
dc.titleFault detection and identification methodology under an incremental learning framework applied to industrial machinery
dc.typeArticle
dc.subject.lemacReconeixement de formes (Informàtica)
dc.subject.lemacMaquinària en la indústria
dc.subject.lemacTolerància als errors (Enginyeria)
dc.contributor.groupUniversitat Politècnica de Catalunya. MCIA - Motion Control and Industrial Applications Research Group
dc.identifier.doi10.1109/ACCESS.2018.2868430
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8454453
dc.rights.accessOpen Access
local.identifier.drac23369847
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AGAUR/2PE/2014SGR101
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/2PE/TRA2016-80472-R
local.citation.authorCariño, J. A.; Delgado Prieto, M.; Iglesias, J. A.; Sanchís, A.; Zurita, D.; Millan, M.; Ortega, J.A.; Romero, R.
local.citation.publicationNameIEEE access
local.citation.volume6
local.citation.startingPage49755
local.citation.endingPage49766


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record