A discrete optimization problem in local networks and data alignment
View/Open
Article principal (2,893Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/12659
Document typeArticle
Defense date1987-06
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
This paper presents the solution of the following
optimization problem that appears in the design of double-loop
structures for local networks and also in data memory, allocation
and data alignment in SIMD processors.
Consider the digraph on N vertices, labeled from 0 to N - 1,
where every vertex i is adjacent to the vertices (i + a) mod Nand
(i + b) mod N. How should a and b be chosen in order to
minimize the diameter and/or the average distance between
vertices of the digraph?
The study shows that for every N there are several different
solutions (a, b) that produce the minimum values of the diameter
and average distance between vertices. These values are of the
order of V3 and (5/9 )3N_, respectively. For most values of N
there exists a solution with a = 1 that facilitates the implementation
of a double-loop structure from a single-loop one.
The geometrical approach used to characterize the optimal
solutions greatly facilitates the study of routing, throughput, and
reliability questions.
CitationFiol, M. A. [et al.]. A discrete optimization problem in local networks and data alignment. "IEEE transactions on computers", Juny 1987, vol. C-36, núm. 6, p. 702-713.
ISSN0018-9340
Files | Description | Size | Format | View |
---|---|---|---|---|
IEEE(double-loop-1987).pdf | Article principal | 2,893Mb | Restricted access |