Mostra el registre d'ítem simple

dc.contributor.authorLatorre Ibars, Ernest
dc.contributor.authorKale, Sohan Sudhir
dc.contributor.authorCasares, Laura
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2018-12-18T12:43:00Z
dc.date.available2019-05-01T00:31:10Z
dc.date.issued2018-11
dc.identifier.citationLatorre, E., Kale, S., Casares, L., Arroyo, M. Active superelasticity in three-dimensional epithelia of controlled shape. "Nature", Novembre 2018, vol. 563, núm. 7730, p. 203-208.
dc.identifier.issn0028-0836
dc.identifier.otherhttps://www.researchgate.net/publication/328640507_Active_superelasticity_in_three-dimensional_epithelia_of_controlled_shape
dc.identifier.urihttp://hdl.handle.net/2117/125924
dc.description.abstractFundamental biological processes are carried out by curved epithelial sheets that enclose a pressurized lumen. How these sheets develop and withstand three-dimensional deformations has remained unclear. Here we combine measurements of epithelial tension and shape with theoretical modelling to show that epithelial sheets are active superelastic materials. We produce arrays of epithelial domes with controlled geometry. Quantification of luminal pressure and epithelial tension reveals a tensional plateau over several-fold areal strains. These extreme strains in the tissue are accommodated by highly heterogeneous strains at a cellular level, in seeming contradiction to the measured tensional uniformity. This phenomenon is reminiscent of superelasticity, a behaviour that is generally attributed to microscopic material instabilities in metal alloys. We show that in epithelial cells this instability is triggered by a stretch-induced dilution of the actin cortex, and is rescued by the intermediate filament network. Our study reveals a type of mechanical behaviour—which we term active superelasticity—that enables epithelial sheets to sustain extreme stretching under constant tension.
dc.format.extent6 p.
dc.language.isoeng
dc.publisherMacmillan Publishers
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Enginyeria de teixits
dc.subject.lcshEpithelium--Growth
dc.titleActive superelasticity in three-dimensional epithelia of controlled shape
dc.typeArticle
dc.subject.lemacEpiteli
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1038/s41586-018-0671-4
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.nature.com/articles/s41586-018-0671-4
dc.rights.accessOpen Access
local.identifier.drac23525144
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//DPI2015-71789-R/ES/INGENIERIA INVERSA DE LA ORGANIZACION MECANICA Y REOLOGIA DE LOS TEJIDOS EPITELIALES/
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/681434/EU/Epithelial cell sheets as engineering materials: mechanics, resilience and malleability/EpiMech
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/731957/EU/Mechanical control of biological function/MECHANO-CONTROL
local.citation.authorLatorre, E.; Kale, S.; Casares, L.; Arroyo, M.
local.citation.publicationNameNature
local.citation.volume563
local.citation.number7730
local.citation.startingPage203
local.citation.endingPage208


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple