Antimagic labelings of caterpillars
View/Open
Cita com:
hdl:2117/125781
Document typeArticle
Defense date2019-04-15
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectAUTAR - A Unified Theory of Algorithmic Relaxations (EC-H2020-648276)
CONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
GRAFOS Y GEOMETRIA: INTERACCIONES Y APLICACIONES (MINECO-MTM2015-63791-R)
CONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
GRAFOS Y GEOMETRIA: INTERACCIONES Y APLICACIONES (MINECO-MTM2015-63791-R)
Abstract
A k-antimagic labeling of a graph G is an injection from E(G) to {1,2, ..., |E(G)|+k} such that all vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of the labels assigned to edges incident to u. We call a graph k-antimagic when it has a k-antimagic labeling, and antimagic when it is 0-antimagic. Hartsfield and Ringel conjectured that every simple connected graph other than K2 is antimagic, but the conjecture is still open even for trees. Here we study k-antimagic labelings of caterpillars. We use algorithmic and constructive techniques, instead of the standard Combinatorial NullStellenSatz method, to prove our results: (i) any caterpillar of order n is (⌊(n−1)/2⌋−2)-antimagic; (ii) any caterpillar with a spine of order s with either at least ⌊(3s+1)/2⌋ leaves or ⌊(s−1)/2⌋ consecutive vertices of degree at most 2 at one end of a longest path, is antimagic; and (iii) if p is a prime number, any caterpillar with a spine of order p, p−1 or p−2 is 1-antimagic.
CitationLozano, A., Mora, M., Seara, C. Antimagic labelings of caterpillars. "Applied mathematics and computation", 15 Abril 2019, vol. 347, p. 734-740.
ISSN0096-3003
Other identifiershttps://arxiv.org/abs/1708.00624
Collections
- Departament de Ciències de la Computació - Articles de revista [1.083]
- DCG - Discrete and Combinatorial Geometry - Articles de revista [29]
- Departament de Matemàtiques - Articles de revista [3.348]
- COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions - Articles de revista [290]
- CGA - Computational Geometry and Applications - Articles de revista [31]
Files | Description | Size | Format | View |
---|---|---|---|---|
AMC-D-18-01012R ... +Caterpillars-Nov-2018.pdf | Postprint de l'article | 299,7Kb | View/Open |