A neural approach to language variety translation
View/Open
document(5).pdf (131,0Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference lecture
Defense date2018
PublisherAssociation for Computational Linguistics
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this paper we present the first neural-based machine translation system trained to translate between standard national varieties of the same language. We take the pair Brazilian - European Portuguese as an example and compare the performance of this method to a phrase-based statis- tical machine translation system. We report a performance improvement of 0.9 BLEU points in translating from European to Brazilian Portuguese and 0.2 BLEU points when translating in the opposite direction. We also carried out a human evaluation experiment with native speakers of Brazilian Portuguese which indicates that humans prefer the output produced by the neural-based system in comparison to the statistical system
CitationRuiz, M., Zampieri, M., Pal, S. A neural approach to language variety translation. A: International Conference on Computational Linguistics. "COLING 2018: The 27th International Conference on Computational Linguistics: Proceedings of the Conference: August 20-26, 2018 Santa Fe, New Mexico, USA". Stroudsburg, PA: Association for Computational Linguistics, 2018.
ISBN978-1-948087-50-6
Files | Description | Size | Format | View |
---|---|---|---|---|
document(5).pdf![]() | 131,0Kb | Restricted access |