Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.848 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An automatic observation-based aerosol typing method for EARLINET

Thumbnail
View/Open
acp-18-15879-2018 Papagianopoulos et al automated aerosol typing.pdf (3,995Mb)
Share:
 
 
10.5194/acp-18-15879-2018
 
  View Usage Statistics
Cita com:
hdl:2117/125208

Show full item record
Papagiannopoulos, N.
Mona, Lucia
Amodeo, Aldo
D'Amico, Giuseppe
Comerón Tejero, AdolfoMés informacióMés informacióMés informació
Rodríguez Gómez, Alejandro AntonioMés informacióMés informacióMés informació
Sicard, MichaëlMés informacióMés informació
Document typeArticle
Defense date2018-11-06
PublisherEuropean Geosciences Union (EGU)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectACTRIS-2 - Aerosols, Clouds, and Trace gases Research InfraStructure (EC-H2020-654109)
Abstract
We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59% (minimum) and 90% (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80%. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite.
CitationPapagiannopoulos, N., Mona, L., Amodeo, A., D'Amico, G., Comeron, A., Rodriguez-Gomez, A., Sicard, M. An automatic observation-based aerosol typing method for EARLINET. "Atmospheric chemistry and physics", 6 Novembre 2018, vol. 18, núm. 21, p. 15879-15901. 
URIhttp://hdl.handle.net/2117/125208
DOI10.5194/acp-18-15879-2018
ISSN1680-7316
Publisher versionhttps://www.atmos-chem-phys.net/18/15879/2018/
Collections
  • Departament de Teoria del Senyal i Comunicacions - Articles de revista [2.395]
  • RSLAB - Remote Sensing Research Group - Articles de revista [617]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
acp-18-15879-20 ... tomated aerosol typing.pdf3,995MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina