On the regular representation of an (essentially) finite 2-group
Visualitza/Obre
on_regular_representation_article.pdf (332,3Kb) (Accés restringit)
Tipus de documentArticle
Data publicació2011-05-01
Condicions d'accésAccés restringit per política de l'editorial
Abstract
The regular representation of an essentially finite 2-group $\mathbb{G}$ in the 2-category $\mathbf{2Vect}_k$ of (Kapranov and Voevodsky) 2-vector spaces is defined and cohomology invariants classifying it computed. It is next shown that all hom-categories in $\mathbf{Rep}_{\mathbf{2Vect}_k}(\mathbb{G})$ are 2-vector spaces under quite standard assumptions on the field $k$, and a formula giving the corresponding "intertwining numbers" is obtained which proves they are symmetric. Finally, it is shown that the forgetful 2-functor ${\boldmath$\omega$}:\mathbf{Rep}_{\mathbf{2Vect}_k}(\mathbb{G})\To\mathbf{2Vect}_k$ is representable with the regular representation as representing object. As a consequence we obtain a $k$-linear equivalence between the 2-vector space $\mathbf{Vect}_k^{\mathcal{G}}$ of functors from the underlying groupoid of $\mathbb{G}$ to $\mathbf{Vect}_k$, on the one hand, and the $k$-linear category $\mathcal{E} nd({\boldmath$\omega$})$ of pseudonatural endomorphisms of ${\boldmath$\omega$}$, on the other hand. We conclude that $\mathcal{E} nd({\boldmath$\omega$})$ is a 2-vector space, and we (partially) describe a basis of it.
CitacióElgueta, J. On the regular representation of an (essentially) finite 2-group. "Advances in mathematics", 01 Maig 2011, vol. 227, núm. 1, p. 170-209.
ISSN0001-8708
Fitxers | Descripció | Mida | Format | Visualitza |
---|---|---|---|---|
on_regular_representation_article.pdf![]() | 332,3Kb | Accés restringit |