On computational order of convergence of some multi-precision solvers of nonlinear systems of equations
Cita com:
hdl:2117/12475
Document typeResearch report
Defense date2011-05-02
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this paper the local order of convergence used in iterative methods to solve nonlinear systems of equations is revisited, where shorter alternative analytic proofs of the order based on developments of multilineal functions are shown. Most important, an adaptive multi-precision arithmetics is used hereof, where in each step the length of the mantissa is defined independently of the knowledge of the root.
Furthermore, generalizations of the one dimensional case to m-dimensions of three approximations of computational order of convergence are defined. Examples illustrating the previous results are given.
Description
Report d'un treball de recerca on es presenten noves tècniques de càlcul de l'ordre de convergència amb una aritmètica adaptativa.
Files | Description | Size | Format | View |
---|---|---|---|---|
Report_GGD-m-dim-COCsmar11.pdf | Report de recerca de COC's m-dim | 224,9Kb | View/Open |