Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
View/Open
Computational fluid.pdf (911,5Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/12451
Document typeArticle
Defense date2011-03
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
A three-dimensional computational fluid dynamics (CFD) simulation study of the ethanol steam reforming
(ESR) in microreactors with square channels has been carried out. A phenomenological kinetic model
describing the ESR on a Co3O4–ZnO catalyst has been established and implemented in the CFD codes.
This model includes the ethanol dehydrogenation to acetaldehyde, ethanol decomposition to CO and
CH4, acetaldehyde steam reforming to H2 and CO2 and water–gas shift as the reactions describing the
catalyst behavior. The very different thermal effects and apparent activation energies of these reactions
allow interpreting the influence of the main operating parameters on the microreactors performance.
The high activation energy and relatively low energy demand of the ethanol decomposition limit the
production of hydrogen at high temperatures and space velocities (up to 70,000 h−1) at yields of the
order of 70%, that is, 4.2 mol of H2 per mol of ethanol fed into the reactor. Another issue is the presence
of significant CO contents in the reformate stream. This can be partially solved by increasing the catalyst
loading which leads to a lower temperature and then an improved selectivity to ethanol dehydrogenation
and acetaldehyde reforming. The microchannel characteristic size in the 0.10–0.70mm range has a
strong influence on the microreactor performance that is mainly governed by the surface area-to-volume
ratio. For the smallest sizes considered in this study (0.10 and 0.35mm) it has been found that the flow
of the gases is nearly isothermal.
CitationUriz, I. [et al.]. Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels. "Chemical engineering journal", Març 2011, vol. 167, núm. 2-3, p. 603-609.
ISSN1385-8947
Publisher versionhttp://linkinghub.elsevier.com/retrieve/pii/S1385894710009721
Files | Description | Size | Format | View |
---|---|---|---|---|
Computational fluid.pdf | 911,5Kb | Restricted access |