Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • gAGE - grup d'Astronomia i GEomàtica
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • gAGE - grup d'Astronomia i GEomàtica
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Closure of the stellar hydrodynamic equations for Gaussian and ellipsoidal velocity distributions

Thumbnail
View/Open
repclos.pdf (171,5Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/1244

Show full item record
Cubarsí Morera, RafaelMés informacióMés informació
Document typeResearch report
Defense date2007-06-07
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 2.5 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 2.5 Spain
Abstract
The closure conditions, which make a finite set of moment equations equivalent to the collisionless Boltzmann equation, are investigated for Gaussian and ellipsoidal velocity distributions working from the com- plete mathematical expression for the nth-order stellar hydrodynamic equation, which was explicitly obtained depending on the comoving mo- ments in a previous paper. First, for a Schwarzschild distribution, it is proved that the whole set of hydrodynamic equations is reduced to the equations of orders n = 0,1,2,3, owing to the recurrent form of the central moments. Furthermore, the equations of order n = 2 and n = 3 become closure conditions for higher even- and odd-order equations, re- spectively. An arbitrary quadratic function in the peculiar velocities, the generalised Schwarzschild distribution, is also investigated. Analogous closure conditions could be obtained from a similar recurrence law for central moments, but an alternative procedure is preferred, which con- sists in to expand a generalised ellipsoidal function as a power series of Schwarzschild distributions with the same mean. Then, due to the linear nature of the problem, the equivalence between the moment equations and the system of equations that Chandrasekhar had obtained working from the collisionless Boltzmann equation is borne out.
URIhttp://hdl.handle.net/2117/1244
Collections
  • Departament de Matemàtiques - Reports de recerca [389]
  • gAGE - grup d'Astronomia i GEomàtica - Reports de recerca [42]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
repclos.pdf171,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina