Show simple item record

dc.contributor.authorBendito Pérez, Enrique
dc.contributor.authorCarmona Mejías, Ángeles
dc.contributor.authorEncinas Bachiller, Andrés Marcos
dc.contributor.authorGesto Beiroa, José Manuel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.description.abstractWe present here strong numerical and statistical evidence of the fact that the Smale's 7th problem can be answered affirmatively. In particular, we show that a local minimum for the logarithmic potential energy in the 2-sphere satisfying the Smale's conditions can be identified with a computational cost of approximately O(N^10})
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica::Teoria del potencial
dc.subject.lcshPotential theory (Mathematics)
dc.subject.lcshCalculus of variations
dc.subject.lcshMathematical optimization
dc.subject.otherFekete points
dc.subject.otherSmale's 7th problem
dc.titleComputational cost of the Fekete problem
dc.subject.lemacTeoria del potencial
dc.subject.lemacCàlcul de variacions
dc.subject.lemacOptimització matemàtica
dc.contributor.groupUniversitat Politècnica de Catalunya. VARIDIS - Varietats Riemannianes Discretes i Teoria del Potencial
dc.subject.amsClassificació AMS::49 Calculus of variations and optimal control; optimization
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 2.5 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 2.5 Spain