dc.contributor.author | Coma Puig, Bernat |
dc.contributor.author | Carmona Vargas, Josep |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Ciències de la Computació |
dc.date.accessioned | 2018-11-08T07:15:53Z |
dc.date.available | 2018-11-08T07:15:53Z |
dc.date.issued | 2018 |
dc.identifier.citation | Coma-Puig, B., Carmona, J. A quality control method for fraud detection on utility customers without an active contract. A: ACM Symposium on Applied Computing. "The 33rd Annual ACM Symposium on Applied Computing: Pau, France: April 9-13, 2018". New York: Association for Computing Machinery (ACM), 2018, p. 495-498. |
dc.identifier.isbn | 978-1-4503-5191-1 |
dc.identifier.uri | http://hdl.handle.net/2117/123717 |
dc.description.abstract | Fraud detection in energy consumption has proven to be a difficult problem for current techniques. In general, the approaches used in this area are restricted to compute a fraud score for each client based on its behaviour. The problem gets much more complicated on customers with no contract, since the company does not have enough information from them to compute an accurate profile. On this paper, we introduce a semi-autonomous method that combines different machine learning algorithms and human knowledge to alleviate the lack of information to build a framework that detects fraud nimbly. |
dc.format.extent | 4 p. |
dc.language.iso | eng |
dc.publisher | Association for Computing Machinery (ACM) |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic |
dc.subject.lcsh | Machine learning |
dc.subject.lcsh | Energy consumption |
dc.subject.lcsh | Fraud |
dc.subject.other | Fraud detection |
dc.subject.other | Quality control method |
dc.subject.other | Utility company |
dc.subject.other | Crime |
dc.subject.other | Energy utilization |
dc.subject.other | Learning algorithms |
dc.subject.other | Learning systems |
dc.subject.other | Human knowledge |
dc.title | A quality control method for fraud detection on utility customers without an active contract |
dc.type | Conference report |
dc.subject.lemac | Aprenentatge automàtic |
dc.subject.lemac | Energia -- Consum |
dc.subject.lemac | Frau |
dc.contributor.group | Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals |
dc.identifier.doi | 10.1145/3167132.3167384 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://dl.acm.org/citation.cfm?id=3167384&dl=ACM&coll=DL |
dc.rights.access | Open Access |
local.identifier.drac | 23423030 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-86727-C2-1-R/ES/MODELOS Y METODOS BASADOS EN GRAFOS PARA LA COMPUTACION EN GRAN ESCALA/ |
local.citation.author | Coma-Puig, B.; Carmona, J. |
local.citation.contributor | ACM Symposium on Applied Computing |
local.citation.pubplace | New York |
local.citation.publicationName | The 33rd Annual ACM Symposium on Applied Computing: Pau, France: April 9-13, 2018 |
local.citation.startingPage | 495 |
local.citation.endingPage | 498 |