dc.contributor.author | Cirera Balcells, Josep |
dc.contributor.author | Quiles Zaguirre, Maria |
dc.contributor.author | Cariño Corrales, Jesús Adolfo |
dc.contributor.author | Zurita Millán, Daniel |
dc.contributor.author | Ortega Redondo, Juan Antonio |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Expressió Gràfica a l'Enginyeria |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.date.accessioned | 2018-11-05T12:36:02Z |
dc.date.issued | 2018 |
dc.identifier.citation | Cirera, J., Quiles, M., Cariño, J. A., Zurita, D., Ortega, J.A. Data-driven operation performance evaluation of multi-chiller system using self-organizing maps. A: IEEE International Conference on Industrial Technology. "2018 IEEE International Conference on Industrial Technology (ICIT): Lyon, France: February 19-22, 2018: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 2099-2104. |
dc.identifier.isbn | 978-1-5386-4053-1 |
dc.identifier.uri | http://hdl.handle.net/2117/123555 |
dc.description | © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works |
dc.description.abstract | Industrial plants performance evaluation has become a difficult task due to the machinery complexity. Multi-chiller systems take up big proportion of energy in food and beverage companies. Complex refrigeration generation is usually hard to evaluate as the affectation of external signals plays an important role and also exist too many control features for the facility operator. Develop a method able to detect any deviation respect the optimal operation can provide the necessary information for the purpose of inefficiencies identification and a further optimization. In this paper, data-driven methods are used in order to describe a reliable coefficient of performance indicator (COP) in several known plant conditions. Self-organizing maps (SOM) are used to recognize different operating points among the multi-variable feature space for later performance evaluation. By the analysis of COP in each operating point, the potential energy saving can be illustrated. An experimental study is performed with refrigeration plant indicating the suitability of the proposed method |
dc.format.extent | 6 p. |
dc.language.iso | eng |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) |
dc.subject | Àrees temàtiques de la UPC::Enginyeria electrònica |
dc.subject.lcsh | Artificial intelligence |
dc.subject.lcsh | Machinery--Monitoring |
dc.subject.lcsh | Machine learning |
dc.subject.lcsh | Neural networks (Computer science)--Industrial applications |
dc.subject.lcsh | Self-organizing maps--Industrial applications |
dc.subject.other | Artificial intelligence |
dc.subject.other | Condition monitoring |
dc.subject.other | Machine learning |
dc.subject.other | Multidimensional systems |
dc.subject.other | Neural networks |
dc.subject.other | Self-organizing feature maps |
dc.subject.other | Unsupervised learning |
dc.subject.other | Self-organizing feature maps |
dc.subject.other | Power measurement |
dc.subject.other | Q measurement |
dc.subject.other | Pressure measurement |
dc.subject.other | Temperature measurement |
dc.subject.other | Principal component analysis |
dc.title | Data-driven operation performance evaluation of multi-chiller system using self-organizing maps |
dc.type | Conference report |
dc.subject.lemac | Intel·ligència artificial -- Aplicacions industrials |
dc.subject.lemac | Maquinària -- Monitoratge |
dc.subject.lemac | Aprenentatge automàtic |
dc.subject.lemac | Xarxes neuronals (Informàtica) -- Aplicacions industrials |
dc.subject.lemac | Sistemes autoorganitzatius |
dc.contributor.group | Universitat Politècnica de Catalunya. MCIA - Motion Control and Industrial Applications Research Group |
dc.identifier.doi | 10.1109/ICIT.2018.8352513 |
dc.relation.publisherversion | https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8342303 |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 23409048 |
dc.description.version | Postprint (author's final draft) |
dc.date.lift | 10000-01-01 |
local.citation.author | Cirera, J.; Quiles, M.; Cariño, J. A.; Zurita, D.; Ortega, J.A. |
local.citation.contributor | IEEE International Conference on Industrial Technology |
local.citation.publicationName | 2018 IEEE International Conference on Industrial Technology (ICIT): Lyon, France: February 19-22, 2018: proceedings |
local.citation.startingPage | 2099 |
local.citation.endingPage | 2104 |