Show simple item record

dc.contributorAcín dal Maschio, Antonio
dc.contributor.authorCurchod, Florian John
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Ciències Fotòniques
dc.date.accessioned2018-11-05T01:30:28Z
dc.date.available2018-11-05T01:30:28Z
dc.date.issued2018-10-11
dc.identifier.citationCurchod, F.J. Nonlocal resources for quantum information tasks. Tesi doctoral, UPC, Institut de Ciències Fotòniques, 2018.
dc.identifier.urihttp://hdl.handle.net/2117/123515
dc.description.abstractThis thesis focusses on the essential features of Quantum Theory that are systems in an entangled state and Bell nonlocal correlations. Here, we take the angle of a resource theory and are interested in understanding better how entanglement and nonlocality, first, relate to one another. Indeed, if entangled systems are necessary for the generation of nonlocal correlations, there nevertheless exist entangled systems that seem unable to do so. Quantitatively, it is also unclear whether "more" entanglement leads to "more" nonlocality and, related to that, which measures should be used as quantifiers. Second, entangled systems and nonlocal correlations have been identified as resources for information tasks with no classical equivalent such as the generation of true random numbers. It is then important to understand how the two quantum resources relate to other quantities generated in information tasks. First, we show that entangled quantum systems are unbounded resources for the generation of certified random numbers by making sequences of measurements on them. This certification is achieved through the successive near maximal violation of a particular Bell inequality for each measurement in the sequence. Moreover, even the simplest two-qubit systems in an almost separable (pure) state achieve this unbounded andomness certification. Second, we show that entanglement and nonlocality are seemingly put in a quantitative equivalence when using the nonlocal volume as measure. This measure is defined as the probability that a system in a given state generates nonlocal correlations when random measurements are performed on it. We prove that this measure satisfies natural properties for an operational measure of nonlocality. Then we show that, in all situations that we could explore, the most nonlocal state -- as measured by the nonlocal volume -- is always the maximally entangled state. Third, we consider multipartite scenarios in which quantum systems are distributed to numerous parties. Note that it is in general harder to generate a system that is entangled between many parties rather than more systems entangled between fewer parties. In that spirit, we develop a framework and tools for the study of correlation depth, i.e. the minimal size of the resource -- such as entangled systems -- that is needed for the (re)production of the correlations. Fourth, we study the equivalence between the multipartite notions of entanglement and of nonlocality. From an operational understanding of multipartite entanglement, we develop simple families of Bell inequalities that are very efficient for the detection of multipartite nonlocality of pure states. Last, we study the utility of multipartite quantum correlations for the design of information protocols. We also identify novel features characteristic of these correlations. The results of this thesis shed light on the interrelations in the triangle entanglementnonlocality- randomness in Quantum Theory. By going beyond the standard approaches -by considering sequences of measurements on the systems or by considering a novel measure of nonlocality- we obtain insight on the quantitative relations between these three essential quantities. Our study of the multipartite scenario also helps in characterising and identifying multipartite correlations in a simple way. Finally, we also deepened our understanding of how entangled systems and nonlocal correlations, in particular multipartite ones, serve as resources for the design of information tasks with no classical equivalent.
dc.description.abstractLa física cuántica es drásticamente distinta de su análogo clásico. Por ejemplo, en principio es posible conocer con certidumbre el resultado de cualquier proceso clásico, si uno tiene un conocimiento perfecto de las condiciones iniciales del proceso y sus interacciones. Sin embargo, la física cuántica es intrínsecamente aleatoria: incluso con un control perfecto, el resultado de un proceso cuántico es, en general, probabilístico. El rango de posibilidades en términos de procesamiento de información también cambia cuando se codifica información en el estado de sistemas cuánticos. El estudio de todas estas nuevas posibilidades es el objeto de la teoría de la información cuántica. Esta tesis se centra en dos fenómenos cuánticos responsables de parte del poder de la teoría de información cuántica: la existencia de sistemas físicos en estados entrelazados y de correlaciones de Bell no-locales. En primer lugar, y tomando el enfoque de una teoría de recursos, nuestro primer objetivo es comprender mejor cómo el entrelazamiento y la no-localidad se relacionan entre sí. De hecho, si bien es sabido que los sistemas entrelazados son necesarios para la generación de correlaciones no-locales, existen sin embargo sistemas entrelazados que parecen incapaces de hacerlo. Cuantitativamente, tampoco está claro si "más" entrelazamiento conduce a "más" no-localidad y qué medidas deben usarse como cuantificadores. En segundo lugar, los sistemas entrelazados y las correlaciones no-locales se han identificado como recursos para tareas de información sin ningún equivalente clásico, como por ejemplo la generación certificada de números aleatorios. Es por tanto importante comprender cómo los dos recursos cuánticos se relacionan con otras cantidades generadas en las tareas de información. El trabajo de la tesis, centrado alrededor de estas dos motivaciones, ha llevado a los resultados que se describen a continuación. Primero, mostramos que los sistemas cuánticos entrelazados son recursos ilimitados para la generación de números aleatorios certificados a través de secuencias de medidas. Esta certificación se logra mediante la sucesiva violación, casi máxima, de una desigualdad de Bell particular para cada medición en la secuencia. Además, incluso los sistemas de dos qubits más simples, en un estado puro casi separable, logran esta certificación de aleatoriedad ilimitada. En segundo lugar, mostramos que el entrelazamiento y la no-localidad se expresan, aparentemente, en una equivalencia cuantitativa cuando se utiliza el "volumen no-local" como cuantificador. El volumen no-local se define como la probabilidad de que un sistema en un estado dado genere correlaciones no-locales cuando se realizan mediciones aleatorias en él. Probamos que este cuantificador satisface las propiedades naturales de una medida operacional de no-localidad. Luego mostramos que, en todas las situaciones que podemos explorar, el estado más nolocal, medido por el volumen no-local, es siempre el más entrelazado. Finalmente, obtenemos varios resultados en escenarios multi-partitos en los que los sistemas cuánticos se distribuyen entre numerosos observadores. Desarrollamos un marco y herramientas para el estudio de la profundidad de correlación, es decir, el tamaño mínimo del recurso (por ejemplo, el entrelazamiento) que es necesario para la reproducción de las correlaciones. Además. estudiamos la equivalencia entre las nociones multi-partitas de entrelazamiento y de no-localidad, obteniendo familias sencillas de desigualdades de Bell que son muy eficientes para la detección de no-localidad multi-partita generada por sistemas en estados puros. Por último, estudiamos la utilidad de las correlaciones cuánticas multi-partitas para el diseño de protocolos de información. Los resultados de esta tesis arrojan luz sobre las interrelaciones en el triángulo entrelazamiento/no-localidad/aleatoriedad en la teoría cuántica. Al ir más allá de los enfoques estándar, al considerar secuencias de mediciones en los sistemas o al considerar una nueva medida de no-localidad, obtenemos información sobre las relaciones cuantitativas entre estas tres cantidades esenciales. Nuestro estudio del escenario multi-partito también ayuda a caracterizar e identificar las correlaciones multi-partitas de una manera simple. Finalmente, profundizamos nuestra comprensión de cómo los sistemas entrelazados y las correlaciones no-locales, en particular multi-partitas, sirven como recursos para el diseño de tareas de información sin análogo clásico.
dc.format.extent209 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Física
dc.titleNonlocal resources for quantum information tasks
dc.typeDoctoral thesis
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/663448


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-ShareAlike 4.0 Generic