Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.015 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uncertainty quantification for stochastic systems

Thumbnail
View/Open
memoria.pdf (2,453Mb) (Restricted access)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/123466

Show full item record
Jornet Sanz, Marc
Tutor / directorCabré Vilagut, XavierMés informacióMés informacióMés informació; Cortés López, Juan Carlos
Document typeMaster thesis
Date2018-10
Rights accessRestricted access - author's decision
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Random differential equations arise to model smooth random phenomena. The error term, instead of being introduced by means of a white noise, arises from imposing randomness to the input coefficients and initial/boundary conditions, with any distribution. We will establish theorems on existence and uniqueness of solution in the $L^p$ setting. We will focus on the first finite-dimensional distributions of the solution stochastic process, with two techniques: the Random Variable Transformation method and Karhunen-Loève expansions. When the probability density function of the response process cannot be computed, it is important to determine the expectation and variance at each time instant. We will give a summary on the main aspects of gPC expansions. The theory introduced in this thesis has permitted writing the following two articles: 10.1016/j.physa.2018.08.024 and 10.22436/jnsa.011.09.06 (article DOIs).
SubjectsStochastic analysis, Anàlisi estocàstica
DegreeMÀSTER UNIVERSITARI EN MATEMÀTICA AVANÇADA I ENGINYERIA MATEMÀTICA (Pla 2010)
URIhttp://hdl.handle.net/2117/123466
Collections
  • Màsters oficials - Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME) [263]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdfBlocked2,453MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina