Show simple item record

dc.contributor.authorAmorós Torrent, Jaume
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-10-04T16:21:05Z
dc.date.available2007-10-04T16:21:05Z
dc.date.issued1997
dc.identifier.urihttp://hdl.handle.net/2117/1229
dc.description.abstractIt studies the fundamental group of complex algebraic varieties, in its Betti, Hodge and de Rham realizations. This study has been carried out both in the absolute case, i.e. fundamental groups of such varieties, and in the relative case, where one studies the monodromy in the fundamental group and the associated Gauss-Manin connection. The three main lines of research have been: (i) The unipotent completion of Kaehler groups, by means of Sullivan's 1-minimal models and formality. (ii) The monodromy in the fundmental group in families of curves with ordinary quadratic singularities. (iii) The 1-minimal model of the Gauss-Manin connection in the cohomology of families of algebraic manifolds.
dc.format.extent187 pages
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshHomology theory
dc.subject.lcshAnalytic spaces
dc.subject.lcshDifferential geometry
dc.subject.otherKaehler group
dc.subject.otherMalcev algebra
dc.subject.otherAlbanese map
dc.subject.otherirrational pencil
dc.subject.othermonodromy in the fundamental group
dc.subject.otherGauss-Manin connection
dc.subject.other1-minimal model
dc.subject.otherdifferential Galois group
dc.titleThe fundamental group of Kaehler manifolds
dc.typeArticle
dc.subject.lemacHomologia, Teoria d'
dc.subject.lemacEspais analítics
dc.subject.lemacGeometria diferencial
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::14 Algebraic geometry::14F (Co)homology theory
dc.subject.amsClassificació AMS::32 Several complex variables and analytic spaces::32C Analytic spaces
dc.subject.amsClassificació AMS::32 Several complex variables and analytic spaces::32J Compact analytic spaces
dc.subject.amsClassificació AMS::53 Differential geometry::53C Global differential geometry
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain