dc.contributor.author Barrabés Vera, Esther dc.contributor.author Ollé Torner, Mercè dc.contributor.other Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I dc.date.accessioned 2007-10-04T15:51:58Z dc.date.available 2007-10-04T15:51:58Z dc.date.issued 2005 dc.identifier.uri http://hdl.handle.net/2117/1227 dc.description.abstract In this paper, we consider horseshoe motion in the planar restricted three-body problem. On one hand, we deal with the families of horseshoe periodic orbits (which surround three equilibrium points called L3, L4 and L5), when the mass parameter µ is positive and small; we describe the structure of such families from the two-body problem (µ = 0). On the other hand, the region of existence of horseshoe periodic orbits for any value of µ ∈ (0, 1/2] implies the understanding of the behaviour of the invariant manifolds of L3. So, a systematic analysis of such manifolds is carried out. As well the implications on the number of homoclinic connections to L3, and on the simple infinite and double infinite period homoclinic phenomena are also analysed. Finally, the relationship between the horseshoe homoclinic orbits and the horseshoe periodic orbits are considered in detail. dc.format.extent 29 pages dc.language.iso eng dc.rights Attribution-NonCommercial-NoDerivs 2.5 Spain dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/2.5/es/ dc.subject.lcsh Differential equations dc.subject.lcsh Differentiable dynamical systems dc.subject.lcsh Dynamics dc.subject.other periodic orbits dc.subject.other invariant stable and unstable manifolds dc.subject.other homoclinic orbits dc.subject.other restricted problem dc.title Invariant manifolds of L_3 and horseshoe motion in the restricted three-body problem dc.type Article dc.subject.lemac Equacions diferencials ordinàries dc.subject.lemac Sistemes dinàmics diferenciables dc.subject.lemac Teoria ergòdica dc.subject.lemac Partícules (Física nuclear) dc.contributor.group Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions dc.subject.ams Classificació AMS::34 Ordinary differential equations::34C Qualitative theory dc.subject.ams Classificació AMS::37 Dynamical systems and ergodic theory::37N Applications dc.subject.ams Classificació AMS::70 Mechanics of particles and systems::70F Dynamics of a system of particles, including celestial mechanics dc.rights.access Open Access
﻿