Mostra el registre d'ítem simple

dc.contributor.authorBarrabés Vera, Esther
dc.contributor.authorOllé Torner, Mercè
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-10-04T15:51:58Z
dc.date.available2007-10-04T15:51:58Z
dc.date.issued2005
dc.identifier.urihttp://hdl.handle.net/2117/1227
dc.description.abstractIn this paper, we consider horseshoe motion in the planar restricted three-body problem. On one hand, we deal with the families of horseshoe periodic orbits (which surround three equilibrium points called L3, L4 and L5), when the mass parameter µ is positive and small; we describe the structure of such families from the two-body problem (µ = 0). On the other hand, the region of existence of horseshoe periodic orbits for any value of µ ∈ (0, 1/2] implies the understanding of the behaviour of the invariant manifolds of L3. So, a systematic analysis of such manifolds is carried out. As well the implications on the number of homoclinic connections to L3, and on the simple infinite and double infinite period homoclinic phenomena are also analysed. Finally, the relationship between the horseshoe homoclinic orbits and the horseshoe periodic orbits are considered in detail.
dc.format.extent29 pages
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshDifferential equations
dc.subject.lcshDifferentiable dynamical systems
dc.subject.lcshDynamics
dc.subject.otherperiodic orbits
dc.subject.otherinvariant stable and unstable manifolds
dc.subject.otherhomoclinic orbits
dc.subject.otherrestricted problem
dc.titleInvariant manifolds of L_3 and horseshoe motion in the restricted three-body problem
dc.typeArticle
dc.subject.lemacEquacions diferencials ordinàries
dc.subject.lemacSistemes dinàmics diferenciables
dc.subject.lemacTeoria ergòdica
dc.subject.lemacPartícules (Física nuclear)
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34C Qualitative theory
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37N Applications
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70F Dynamics of a system of particles, including celestial mechanics
dc.rights.accessOpen Access


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple

Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 2.5 Espanya