Show simple item record

dc.contributor.authorLeseduarte Milán, María Carme
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2018-10-22T11:34:25Z
dc.date.available2018-10-22T11:34:25Z
dc.date.issued2019-05
dc.identifier.citationLeseduarte, M. C., Quintanilla, R. Decay rates of Saint-Venant type for a functionally graded heat-conducting hollowed cylinder. "Mathematics and mechanics of solids", Maig 2019, vol. 24, núm. 5, p. 1368-1386.
dc.identifier.issn1081-2865
dc.identifier.urihttp://hdl.handle.net/2117/122731
dc.description.abstractIn this paper we consider the case of a functionally graded heat-conducting hollowed cylinder. Our purpose is to investigate the consequences of the material inhomogeneity on the decay of Saint-Venant end effects in the case of linear isotropic rigid solids. The mathematical issues involve the implications of spatial inhomogeneity on the decay rates of solutions to Dirichlet boundary-value problems. The rate of decay is characterized in terms of the smallest eigenvalue of a Sturm–Liouville problem. We first consider the case where the inhomogeneity depends on the radius of the cross-section, but later we also consider the case where the inhomogeneity also depends on the axial variable. The last section considers the case where the cross-section is increasing. Some tables and figures illustrate our estimates.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshDifferential equations, Hyperbolic
dc.subject.lcshHeat --Transmission -- Mathematical models
dc.subject.otherFunctionally graded materials
dc.subject.otherheat conduction
dc.subject.otherspatial decay estimates
dc.subject.otherSaint-Venant’s principle
dc.subject.otherinhomogeneity
dc.titleDecay rates of Saint-Venant type for a functionally graded heat-conducting hollowed cylinder
dc.typeArticle
dc.subject.lemacCalor -- Transmissió -- Models matemàtics
dc.subject.lemacEquacions diferencials hiperbòliques
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.identifier.doi10.1177/1081286518796474
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::80 Classical thermodynamics, heat transfer::80A Thermodynamics and heat transfer
dc.subject.amsClassificació AMS::35 Partial differential equations::35J Partial differential equations of elliptic type
dc.relation.publisherversionhttp://journals.sagepub.com/doi/10.1177/1081286518796474
dc.rights.accessOpen Access
drac.iddocument23346801
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2016-74934-P
upcommons.citation.authorLeseduarte, M. C., Quintanilla, R.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameMathematics and mechanics of solids
upcommons.citation.volume24
upcommons.citation.number5
upcommons.citation.startingPage1368
upcommons.citation.endingPage1386


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder