Show simple item record

dc.contributorDini, Paolo
dc.contributor.authorMiozzo, Marco
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica
dc.date.accessioned2018-10-22T00:30:36Z
dc.date.available2018-10-22T00:30:36Z
dc.date.issued2018-09-18
dc.identifier.citationMiozzo, M. Energy sustainability of next generation cellular networks through learning techniques. Tesi doctoral, UPC, Departament d'Enginyeria Telemàtica, 2018.
dc.identifier.urihttp://hdl.handle.net/2117/122703
dc.description.abstractThe trend for the next generation of cellular network, the Fifth Generation (5G), predicts a 1000x increase in the capacity demand with respect to 4G, which leads to new infrastructure deployments. To this respect, it is estimated that the energy consumption of ICT might reach the 51% of global electricity production by 2030, mainly due to mobile networks and services. Consequently, the cost of energy may also become predominant in the operative expenses of a Mobile Network Operator (MNO). Therefore, an efficient control of the energy consumption in 5G networks is not only desirable but essential. In fact, the energy sustainability is one of the pillars in the design of the next generation cellular networks. In the last decade, the research community has been paying close attention to the Energy Efficiency (EE) of the radio communication networks, with particular care on the dynamic switch ON/OFF of the Base Stations (BSs). Besides, 5G architectures will introduce the Heterogeneous Network (HetNet) paradigm, where Small BSs (SBSs) are deployed to assist the standard macro BS for satisfying the high traffic demand and reducing the impact on the energy consumption. However, only with the introduction of Energy Harvesting (EH) capabilities the networks might reach the needed energy savings for mitigating both the high costs and the environmental impact. In the case of HetNets with EH capabilities, the erratic and intermittent nature of renewable energy sources has to be considered, which entails some additional complexity. Solar energy has been chosen as reference EH source due to its widespread adoption and its high efficiency in terms of energy produced compared to its costs. To this end, in the first part of the thesis, a harvested solar energy model has been presented based on accurate stochastic Markov processes for the description of the energy scavenged by outdoor solar sources. The typical HetNet scenario involves dense deployments with a high level of flexibility, which suggests the usage of distributed control systems rather than centralized, where the scalability can become rapidly a bottleneck. For this reason, in the second part of the thesis, we propose to model the SBS tier as a Multi-agent Reinforcement Learning (MRL) system, where each SBS is an intelligent and autonomous agent, which learns by directly interacting with the environment and by properly utilizing the past experience. The agents implemented in each SBS independently learn a proper switch ON/OFF control policy, so as to jointly maximize the system performance in terms of throughput, drop rate and energy consumption, while adapting to the dynamic conditions of the environment, in terms of energy inflow and traffic demand. However, MRL might suffer the problem of coordination when finding simultaneously a solution among all the agents that is good for the whole system. In consequence, the Layered Learning paradigm has been adopted to simplify the problem by decomposing it in subtasks. In particular, the global solution is obtained in a hierarchical fashion: the learning process of a subtask is aimed at facilitating the learning of the next higher subtask layer. The first layer implements an MRL approach and it is in charge of the local online optimization at SBS level as function of the traffic demand and the energy incomes. The second layer is in charge of the network-wide optimization and it is based on Artificial Neural Networks aimed at estimating the model of the overall network.
dc.description.abstractCon la llegada de la nueva generación de redes móviles, la quinta generación (5G), se predice un aumento por un factor 1000 en la demanda de capacidad respecto a la 4G, con la consecuente instalación de nuevas infraestructuras. Se estima que el gasto energético de las tecnologías de la información y la comunicación podría alcanzar el 51% de la producción mundial de energía en el año 2030, principalmente debido al impacto de las redes y servicios móviles. Consecuentemente, los costes relacionados con el consumo de energía pasarán a ser una componente predominante en los gastos operativos (OPEX) de las operadoras de redes móviles. Por lo tanto, un control eficiente del consumo energético de las redes 5G, ya no es simplemente deseable, sino esencial. En la última década, la comunidad científica ha enfocado sus esfuerzos en la eficiencia energética (EE) de las redes de comunicaciones móviles, con particular énfasis en algoritmos para apagar y encender las estaciones base (BS). Además, las arquitecturas 5G introducirán el paradigma de las redes heterogéneas (HetNet), donde pequeñas BSs, o small BSs (SBSs), serán desplegadas para ayudar a las grandes macro BSs en satisfacer la gran demanda de tráfico y reducir el impacto en el consumo energético. Sin embargo, solo con la introducción de técnicas de captación de la energía ambiental, las redes pueden alcanzar los ahorros energéticos requeridos para mitigar los altos costes de la energía y su impacto en el medio ambiente. En el caso de las HetNets alimentadas mediante energías renovables, la naturaleza errática e intermitente de esta tipología de energías constituye una complejidad añadida al problema. La energía solar ha sido utilizada como referencia debido a su gran implantación y su alta eficiencia en términos de cantidad de energía producida respecto costes de producción. Por consiguiente, en la primera parte de la tesis se presenta un modelo de captación de la energía solar basado en un riguroso modelo estocástico de Markov que representa la energía capturada por paneles solares para exteriores. El escenario típico de HetNet supondrá el despliegue denso de SBSs con un alto nivel de flexibilidad, lo cual sugiere la utilización de sistemas de control distribuidos en lugar de aquellos que están centralizados, donde la adaptabilidad podría convertirse rápidamente en un reto difícilmente gestionable. Por esta razón, en la segunda parte de la tesis proponemos modelar las SBSs como un sistema multiagente de aprendizaje automático por refuerzo, donde cada SBS es un agente inteligente y autónomo que aprende interactuando directamente con su entorno y utilizando su experiencia acumulada. Los agentes en cada SBS aprenden independientemente políticas de control del apagado y encendido que les permiten maximizar conjuntamente el rendimiento y el consumo energético a nivel de sistema, adaptándose a condiciones dinámicas del ambiente tales como la energía renovable entrante y la demanda de tráfico. No obstante, los sistemas multiagente sufren problemas de coordinación cuando tienen que hallar simultáneamente una solución de forma distribuida que sea buena para todo el sistema. A tal efecto, el paradigma de aprendizaje por niveles ha sido utilizado para simplificar el problema dividiéndolo en subtareas. Más detalladamente, la solución global se consigue de forma jerárquica: el proceso de aprendizaje de una subtarea está dirigido a ayudar al aprendizaje de la subtarea del nivel superior. El primer nivel contempla un sistema multiagente de aprendizaje automático por refuerzo y se encarga de la optimización en línea de las SBSs en función de la demanda de tráfico y de la energía entrante. El segundo nivel se encarga de la optimización a nivel de red del sistema y está basado en redes neuronales artificiales diseñadas para estimar el modelo de todas las BSs
dc.format.extent144 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació
dc.titleEnergy sustainability of next generation cellular networks through learning techniques
dc.typeDoctoral thesis
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/663203


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 Generic