Show simple item record

dc.contributor.authorBarba, Albert
dc.contributor.authorMaazouz, Yassine
dc.contributor.authorDíez Escudero, Anna
dc.contributor.authorEspañol Pons, Montserrat
dc.contributor.authorMontufar Jiménez, Edgar Benjamin
dc.contributor.authorGinebra Molins, Maria Pau
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2018-10-19T12:43:21Z
dc.date.available2022-10-01T00:32:52Z
dc.date.issued2018-10-01
dc.identifier.citationBarba, A., Maazouz, Y., Díez, A., Español, M., Montufar, Edgar B., Ginebra, M.P. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture. "Acta biomaterialia", 1 Octubre 2018, vol. 79, p. 135-147.
dc.identifier.issn1742-7061
dc.identifier.urihttp://hdl.handle.net/2117/122680
dc.description.abstractThere is an urgent need of synthetic bone grafts with enhanced osteogenic capacity. This can be achieved by combining biomaterials with exogenous growth factors, which however can have numerous undesired side effects, but also by tuning the intrinsic biomaterial properties. In a previous study, we showed the synergistic effect of nanostructure and pore architecture of biomimetic calcium deficient hydroxyapatite (CDHA) scaffolds in enhancing osteoinduction, i.e. fostering the differentiation of mesenchymal stem cells to bone forming cells. This was demonstrated by assessing bone formation after implanting the scaffolds intramuscularly. The present study goes one step forward, since it analyzes the effect of the geometrical features of the same CDHA scaffolds, obtained either by 3D-printing or by foaming, on the osteogenic potential and resorption behaviour in a bony environment. After 6 and 12¿weeks of intraosseous implantation, both bone formation and material degradation had been drastically affected by the macropore architecture of the scaffolds. Whereas nanostructured CDHA was shown to be highly osteoconductive both in the robocast and foamed scaffolds, a superior osteogenic capacity was observed in the foamed scaffolds, which was associated with their higher intrinsic osteoinductive potential. Moreover, they showed a significantly higher cell-mediated degradation than the robocast constructs, with a simultaneous and progressive replacement of the scaffold by new bone. In conclusion, these results demonstrate that the control of macropore architecture is a crucial parameter in the design of synthetic bone grafts, which allows fostering both material degradation and new bone formation.
dc.format.extent13 p.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshThree-dimensional printing
dc.subject.lcshCalcium phosphate
dc.subject.lcshBones--Growth
dc.subject.otherOsteogenesis Pore architecture 3D-printing Foaming Calcium phosphate
dc.titleOsteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture
dc.typeArticle
dc.subject.lemacImpressió tridimensional
dc.subject.lemacFosfat de calci
dc.subject.lemacOssos -- Creixement
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1016/j.actbio.2018.09.003
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac23368478
dc.description.versionPostprint (author's final draft)
local.citation.authorBarba, A.; Maazouz, Y.; Díez, A.; Español, M.; Montufar, Edgar B.; Ginebra, M.P.
local.citation.publicationNameActa biomaterialia
local.citation.volume79
local.citation.startingPage135
local.citation.endingPage147


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record