Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
76.418 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning for cancer classification

Thumbnail
View/Open
memoria.pdf (4,447Mb) (Restricted access)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/122590

Show full item record
García Ortegón, Miguel
Tutor / directorRuiz Costa-Jussà, MartaMés informacióMés informació; Schaefer, Martin; Weber, Marc
CovenanteeCentre de Regulació Genòmica. Departament de Teoria del Senyal i Comunicacions
Document typeMaster thesis
Date2018-10
Rights accessRestricted access - author's decision
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In this thesis, we used support vector machines (SVMs) to build a tissue-of-origin classifier of 17 cancer types. Our classifier, which uses RNA expression data from over 20000 genes, works with high accuracy on primary (97.6%), metastasis (91.9%) and cell-line samples (71.1%). With the goal of enabling cheaper diagnostics for the clinics, we performed feature selection through recursive feature elimination (RFE) and identified a gene signature of just 120 genes that maintains almost all of the predictive power. We explored how our model could achieve such great accuracy and found that it recognises characteristics from healthy tissues rather than cancer. In order to help disseminate our results among clinicians and basic researchers, we released our trained model and its code in the command-line tool TOPOS (Tissue-of-Origin Predictor of OncoSamples). To our knowledge, this is the first time that a metastasis classifier is developed based on RNAseq data, and we hope to pave the way for others to do the same in the future. (I would like to explain that the reason why I cannot upload the thesis to UPCommons is that we are waiting for peer review to publish a paper with the results. Once the paper has been published, I would be happy to upload it to UPCommons as well if the paper's guidelines allow us to do so.)
SubjectsBiology, Natural history, Biologia, Ciències naturals
DegreeMÀSTER UNIVERSITARI EN MATEMÀTICA AVANÇADA I ENGINYERIA MATEMÀTICA (Pla 2010)
URIhttp://hdl.handle.net/2117/122590
Collections
  • Màsters oficials - Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME) [337]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdfBlocked4,447MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina