A sufficient degree condition for a graph to contain all trees of size k
View/Open
sufficient_degree_condition.pdf (173,8Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/12222
Document typeArticle
Defense date2011-01
PublisherSpringer Verlag
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The Erdős-Sós conjecture says that a graph G on n vertices and number of edges e(G) > n(k− 1)/2 contains all trees of size k. In this paper we prove a sufficient condition for a graph to contain every tree of size k formulated in terms of the minimum edge degree ζ(G) of a graph G defined as ζ(G) = min{d(u) + d(v) − 2: uv ∈ E(G)}. More precisely, we show that a connected graph G with maximum degree Δ(G) ≥ k and minimum edge degree ζ(G) ≥ 2k − 4 contains every tree of k edges if d G (x) + d G (y) ≥ 2k − 4 for all pairs x, y of nonadjacent neighbors of a vertex u of d G (u) ≥ k.
CitationBalbuena, C.; Márquez, A.; Portillo, J. A sufficient degree condition for a graph to contain all trees of size k. "Acta mathematica sinica, english series", Gener 2011, vol. 27, núm. 1, p. 135-140.
ISSN1439-8516
Publisher versionhttp://www.springerlink.com/content/52718460284v2241/
Files | Description | Size | Format | View |
---|---|---|---|---|
sufficient_degree_condition.pdf![]() | 173,8Kb | Restricted access |