Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.567 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bijections for Baxter families and related objects

Thumbnail
View/Open
bijections_baxter_families.pdf (555,4Kb)
Share:
 
 
10.1016/j.jcta.2010.03.017
 
  View Usage Statistics
Cita com:
hdl:2117/12212

Show full item record
Felsner, Stefan
Fusy, Éric
Noy Serrano, MarcosMés informacióMés informacióMés informació
Orden, David
Document typeArticle
Defense date2011-04
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectEXPLOREMAPS - Combinatorial methods, from enumerative topology to random discrete structures and compact data representations. (EC-FP7-208471)
Abstract
The Baxter number can be written as $B_n = \sum_0^n \Theta_{k,n-k-1}$. These numbers have first appeared in the enumeration of so-called Baxter permutations; $B_n$ is the number of Baxter permutations of size $n$, and $\Theta_{k,l}$ is the number of Baxter permutations with $k$ descents and $l$ rises. With a series of bijections we identify several families of combinatorial objects counted by the numbers $\Theta_{k,l}$. Apart from Baxter permutations, these include plane bipolar orientations with $k+2$ vertices and $l+2$ faces, 2-orientations of planar quadrangulations with $k+2$ white and $l+2$ black vertices, certain pairs of binary trees with $k+1$ left and $l+1$ right leaves, and a family of triples of non-intersecting lattice paths. This last family allows us to determine the value of $\Theta_{k,l}$ as an application of the lemma of Gessel and Viennot. The approach also allows us to count certain other subfamilies, e.g., alternating Baxter permutations, objects with symmetries and, via a bijection with a class of plan bipolar orientations also Schnyder woods of triangulations, which are known to be in bijection with 3-orientations.
CitationFelsner, S. [et al.]. Bijections for Baxter families and related objects. "Journal of combinatorial theory. Series A", Abril 2011, vol. 118, núm. 3, p. 993-1020. 
URIhttp://hdl.handle.net/2117/12212
DOI10.1016/j.jcta.2010.03.017
ISSN0097-3165
Publisher versionhttp://linkinghub.elsevier.com/retrieve/pii/S0097316510000671
Collections
  • Departament de Matemàtiques - Articles de revista [2.998]
  • MD - Matemàtica Discreta - Articles de revista [75]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
bijections_baxter_families.pdf555,4KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Cookies policy
  • Inici de la pàgina