Show simple item record

dc.contributor.authorEsteban Pascual, Guillermo
dc.contributor.authorHuemer, Clemens
dc.contributor.authorSilveira, Rodrigo Ignacio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.identifier.citationEsteban, G., Huemer, C., Silveira, R.I. New results on production matrices for geometric graphs. "Electronic notes in discrete mathematics", 1 Juliol 2018, vol. 68, núm. July 2018, p. 215-220.
dc.description.abstractWe present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another way of counting the number of such objects. For instance, a formula for the number of connected geometric graphs with given root degree, drawn on a set of n points in convex position in the plane, is presented. Further, we find the characteristic polynomials and we provide a characterization of the eigenvectors of the production matrices.
dc.format.extent6 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria
dc.subject.lcshCombinatorial analysis
dc.subject.othergeometric graph
dc.subject.otherproduction matrix
dc.subject.otherRiordan array
dc.titleNew results on production matrices for geometric graphs
dc.subject.lemacAnàlisi combinatòria
dc.contributor.groupUniversitat Politècnica de Catalunya. DCG - Discrete and Combinatorial Geometry
dc.contributor.groupUniversitat Politècnica de Catalunya. CGA -Computational Geometry and Applications
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorEsteban, G.; Huemer, C.; Silveira, R.I.
upcommons.citation.publicationNameElectronic notes in discrete mathematics
upcommons.citation.numberJuly 2018

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder