Show simple item record

dc.contributorRadojković, Petar
dc.contributor.authorŽivanovič, Darko
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2018-09-12T14:51:58Z
dc.date.available2018-09-12T14:51:58Z
dc.date.issued2018-07-02
dc.identifier.citationŽivanovič, D. "Memory systems for high-performance computing: the capacity and reliability implications". Tesi doctoral, UPC, Departament d'Arquitectura de Computadors, 2018.
dc.identifier.urihttp://hdl.handle.net/2117/121194
dc.description.abstractMemory systems are signicant contributors to the overall power requirements, energy consumption, and the operational cost of large high-performance computing systems (HPC). Limitations of main memory systems in terms of latency, bandwidth and capacity, can signicantly affect the performance of HPC applications, and can have strong negative impact on system scalability. In addition, errors in the main memory system can have a strong impact on the reliability, accessibility and serviceability of large-scale clusters. This thesis studies capacity and reliability issues in modern memory systems for high-performance computing. The choice of main memory capacity is an important aspect of high-performance computing memory system design. This choice becomes in- creasingly important now that 3D-stacked memories are entering the market. Compared with conventional DIMMs, 3D memory chiplets provide better performance and energy efficiency but lower memory capacities. Therefore the adoption of 3D-stacked memories in the HPC domain depends on whether we can find use cases that require much less memory than is available now. We analyze memory capacity requirements of important HPC benchmarks and applications. The study identifies the HPC applications and use cases with memory footprints that could be provided by 3D-stacked memory chiplets, making a first step towards the adoption of this novel technology in the HPC domain. For HPC domains where large memory capacities are required, we propose scaling-in of HPC applications to reduce energy consumption and the running time of a batch of jobs. We also propose upgrading the per-node memory capacity, which enables greater degree of scaling-in and additional energy savings. Memory system is one of the main causes of hardware failures. In each generation, the DRAM chip density and the amount of the memory in systems increase, while the DRAM technology process is constantly shrinking. Therefore, we could expect that the DRAM failures could have a serious impact on the future-systems reliability. This thesis studies DRAM errors observed on a production HPC system during a period of two years. We clearly distinguish between two different approaches for the DRAM error analysis: categorical analysis and the analysis of error rates. The first approach compares the errors at the DIMM level and partitions the DIMMs into various categories, e.g. based on whether they did or did not experience an error. The second approach is to analyze the error rates, i.e., to present the total number of errors relative to other statistics, typically the number of MB-hours or the duration of the observation period. We show that although DRAM error analysis may be performed with both approaches, they are not interchangeable and can lead to completely different conclusions. We further demonstrate the importance of providing statistical significance and presenting results that have practical value and real-life use. We show that various widely-accepted approaches for DRAM error analysis may provide data that appear to support an interesting conclusion, but are not statistically signifcant, meaning that they could merely be the result of chance. We hope the study of methods for DRAM error analysis presented in this thesis will become a standard for any future analysis of DRAM errors in the field.
dc.description.abstractLos sistemas de memoria son contribuyentes significativos al consumo de energía y al coste de operación de los sistemas de computación de altas prestaciones (HPC). Limitaciones de los sistemas de memoria en términos de latencia, ancho de banda y capacidad, pueden afectar significativamente el rendimiento de aplicaciones HPC, y pueden tener un fuerte impacto negativo en la escalabilidad del sistema. Además, los errores en el sistema de memoria principal pueden tener un fuerte impacto sobre la confiabilidad, disponibilidad y capacidad de servicio de los clusters a gran escala. Esta tesis estudia problemas de capacidad y confiabilidad de los sistemas modernos de computación de altas prestaciones. La elección de capacidad de la memoria principal es un aspecto importante del diseño de sistemas de computación de altas prestaciones. Esta elección empieza ser cada vez más importante con memorias 3D apareciendo en el mercado. Comparados con los DIMMs convencionales, los chips de memoria 3D proporcionan mejor rendimiento y eficiencia energética, pero menores capacidades de memoria. Por lo tanto, la adopción de memorias 3D en el dominio HPC depende de si es posible encontrar casos de uso que requieren mucha menos memoria de la que está disponible ahora. Analizamos los requisitos de capacidad de memoria de importantes benchmarks y aplicaciones de HPC. El estudio identifica las aplicaciones de HPC y los casos de uso con huellas de memoria que podrían ser proporcionadas por los chips de memoria 3D dando un primer paso hacia la adopción de esta nueva tecnología en el dominio HPC. Para dominios HPC donde se requieren grandes capacidades de memoria, proponemos scaling-in de las aplicaciones de HPC para reducir el consumo de energía y el tiempo de ejecución de un lote de tareas. También proponemos ampliar la capacidad de memoria que permite un mayor grado de scaling-in y ahorros de energía adicionales. El sistema de memoria es una de las principales causas de fallas de hardware. En cada generación, la densidad del chip DRAM y la cantidad de memoria en el sistema aumentan, mientras el proceso de tecnología DRAM se reduce constantemente. Por lo tanto, podríamos esperar que los fallos DRAM podrían tener un serio impacto en la confiabilidad de los sistemas en el futuro. Esta tesis estudia los errores de DRAM observados en un sistema de producción HPC durante un período de dos años. Nosotros distinguimos claramente dos enfoques diferentes de análisis de error DRAM: análisis categórico y análisis de tasas de error. El primer enfoque compara los errores en el nivel DIMM y divide los DIMMs en varias categorías, por ejemplo, dependiendo si tuvieron o no un error. El segundo enfoque es analizar las tasas de error, es decir, presentar el número total de errores relativos a otras estadísticas, generalmente el número de MB-horas o la duración del período de observación. Mostramos que aunque el análisis de error DRAM se puede realizar con ambos enfoques, estos no son intercambiables y pueden llevar a conclusiones completamente diferentes. Demostramos la importancia de proporcionar significación estadística y presentar resultados que tienen un valor práctico y uso en la vida real. Mostramos que varios enfoques de análisis de errores de DRAM pueden proporcionar datos que apoyan una conclusión interesante, pero no son estadísticamente significativos, lo que significa que simplemente podrían ser el resultado de casualidad. Esperamos que el estudio de los métodos para el análisis de errores DRAM presentados en esta tesis se convertirá en un estándar para cualquier análisis futuro de errores de DRAM en el campo.
dc.format.extent144 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.titleMemory systems for high-performance computing: the capacity and reliability implications
dc.typeDoctoral thesis
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/650825


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder