Mostra el registre d'ítem simple

dc.contributor.authorAgostini, Alejandro Gabriel
dc.contributor.authorCelaya Llover, Enric
dc.contributor.otherInstitut de Robòtica i Informàtica Industrial
dc.date.accessioned2011-03-25T17:37:53Z
dc.date.available2011-03-25T17:37:53Z
dc.date.created2010
dc.date.issued2010
dc.identifier.citationAgostini, A.G.; Celaya, E. Reinforcement learning with a Gaussian mixture model. A: International Joint Conference on Neural Networks. "2010 International Joint Conference on Neural Networks". Barcelona: 2010, p. 3485-3492.
dc.identifier.urihttp://hdl.handle.net/2117/12093
dc.description.abstractRecent approaches to Reinforcement Learning (RL) with function approximation include Neural Fitted Q Iteration and the use of Gaussian Processes. They belong to the class of fitted value iteration algorithms, which use a set of support points to fit the value-function in a batch iterative process. These techniques make efficient use of a reduced number of samples by reusing them as needed, and are appropriate for applications where the cost of experiencing a new sample is higher than storing and reusing it, but this is at the expense of increasing the computational effort, since these algorithms are not incremental. On the other hand, non-parametric models for function approximation, like Gaussian Processes, are preferred against parametric ones, due to their greater flexibility. A further advantage of using Gaussian Processes for function approximation is that they allow to quantify the uncertainty of the estimation at each point. In this paper, we propose a new approach for RL in continuous domains based on Probability Density Estimations. Our method combines the best features of the previous methods: it is non-parametric and provides an estimation of the variance of the approximated function at any point of the domain. In addition, our method is simple, incremental, and computationally efficient. All these features make this approach more appealing than Gaussian Processes and fitted value iteration algorithms in general.
dc.format.extent8 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.lcshMachine learning
dc.subject.othergeneralisation (artificial intelligence) learning (artificial intelligence)
dc.titleReinforcement learning with a Gaussian mixture model
dc.typeConference report
dc.subject.lemacAprenentatge automàtic
dc.contributor.groupUniversitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents
dc.identifier.doi10.1109/IJCNN.2010.5596306
dc.subject.amsÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subject.inspecClassificació INSPEC::Cybernetics::Artificial intelligence::Learning (artificial intelligence)
dc.relation.publisherversionhttp://dx.doi.org/10.1109/IJCNN.2010.5596306
dc.rights.accessOpen Access
local.identifier.drac4966782
dc.description.versionPostprint (published version)
local.citation.authorAgostini, A.G.; Celaya, E.
local.citation.contributorInternational Joint Conference on Neural Networks
local.citation.pubplaceBarcelona
local.citation.publicationName2010 International Joint Conference on Neural Networks
local.citation.startingPage3485
local.citation.endingPage3492


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple