Show simple item record

dc.contributor.authorLi, Bin
dc.contributor.authorMillán Zurita, Daniel
dc.contributor.authorTorres Sánchez, Alejandro
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2018-08-28T16:20:58Z
dc.date.available2020-11-01T01:38:08Z
dc.date.issued2018-10
dc.identifier.citationLi, B., Millán, D., Torres-Sánchez, A., Arroyo, M. A variational model of fracture for tearing brittle thin sheets. "Journal of the mechanics and physics of solids", Octubre 2018, vol. 119, p. 334-348.
dc.identifier.issn0022-5096
dc.identifier.otherhttps://www.researchgate.net/publication/326286345_A_variational_model_of_fracture_for_tearing_brittle_thin_sheets
dc.identifier.urihttp://hdl.handle.net/2117/120617
dc.description.abstractTearing of brittle thin elastic sheets, possibly adhered to a substrate, involves a rich interplay between nonlinear elasticity, geometry, adhesion, and fracture mechanics. In addition to its intrinsic and practical interest, tearing of thin sheets has helped elucidate fundamental aspects of fracture mechanics including the mechanism of crack path selection. A wealth of experimental observations in different experimental setups is available, which has been often rationalized with insightful yet simplified theoretical models based on energetic considerations. In contrast, no computational method has addressed tearing in brittle thin elastic sheets. Here, motivated by the variational nature of simplified models that successfully explain crack paths in tearing sheets, we present a variational phase-field model of fracture coupled to a nonlinear Koiter thin shell model including stretching and bending. We show that this general yet straightforward approach is able to reproduce the observed phenomenology, including spiral or power-law crack paths in free standing films, or converging/diverging cracks in thin films adhered to negatively/positively curved surfaces, a scenario not amenable to simple models. Turning to more quantitative experiments on thin sheets adhered to planar surfaces, our simulations allow us to examine the boundaries of existing theories and suggest that homogeneous damage induced by moving folds is responsible for a systematic discrepancy between theory and experiments. Thus, our computational approach to tearing provides a new tool to understand these complex processes involving fracture, geometric nonlinearity and delamination, complementing experiments and simplified theories.
dc.format.extent15 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures
dc.subject.lcshFracture mechanics
dc.subject.otherVariational model Tearing Fracture Thin sheets Subdivision surface
dc.titleA variational model of fracture for tearing brittle thin sheets
dc.typeArticle
dc.subject.lemacMecànica de fractura
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1016/j.jmps.2018.06.022
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0022509618303156
dc.rights.accessOpen Access
local.identifier.drac23310657
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/681434/EU/Epithelial cell sheets as engineering materials: mechanics, resilience and malleability/EpiMech
local.citation.authorLi, B.; Millán, D.; Torres-Sánchez, A.; Arroyo, M.
local.citation.publicationNameJournal of the mechanics and physics of solids
local.citation.volume119
local.citation.startingPage334
local.citation.endingPage348


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain