Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.641 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional regression on remote sensing data in oceanography

Thumbnail
View/Open
Final authors version (1,483Mb)
Share:
 
 
10.1007/s10651-018-0405-7
 
  View Usage Statistics
Cita com:
hdl:2117/120600

Show full item record
Acar Denizli, NihanMés informacióMés informació
Delicado Useros, Pedro FranciscoMés informacióMés informacióMés informació
Basarir, Gülay
Caballero de Frutos, Isabel
Document typeArticle
Defense date2018-06-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectESTRECHANDO LA BRECHA ENTRE LA ESTADISTICA Y LA CIENCIA DE DATOS (AEI-MTM2017-88142-P)
Abstract
The aim of this study is to propose the use of a functional data analysis approach as an alternative to the classical statistical methods most commonly used in oceanography and water quality management. In particular we consider the prediction of total suspended solids (TSS) based on remote sensing (RS) data. For this purpose several functional linear regression models and classical non-functional regression models are applied to 10 years of RS data obtained from medium resolution imaging spectrometer sensor to predict the TSS concentration in the coastal zone of the Guadalquivir estuary. The results of functional and classical approaches are compared in terms of their mean square prediction error values and the superiority of the functional models is established. A simulation study has been designed in order to support these findings and to determine the best prediction model for the TSS parameter in more general contexts.
Description
The final publication is available at link.springer.com
CitationAcar, N., Delicado, P., Basarir, G., Caballero, I. Functional regression on remote sensing data in oceanography. "Environmental and ecological statistics", 1 Juny 2018, vol. 25, núm. 2, p. 277-304. 
URIhttp://hdl.handle.net/2117/120600
DOI10.1007/s10651-018-0405-7
ISSN1352-8505
Publisher versionhttps://link.springer.com/article/10.1007%2Fs10651-018-0405-7
Collections
  • ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials - Articles de revista [105]
  • Departament d'Estadística i Investigació Operativa - Articles de revista [634]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
AcarDenizli et al_EES-rev.pdfFinal authors version1,483MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina