Mostra el registre d'ítem simple

dc.contributor.authorFalqués Serra, Albert
dc.contributor.authorKakeh Burgada, Nabil
dc.contributor.authorCalvete Manrique, Daniel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2018-08-02T08:27:05Z
dc.date.available2019-09-01T00:25:26Z
dc.date.issued2018-06-27
dc.identifier.citationFalques, A., Kakeh, N., Calvete, D. A new instability mechanism related to high-angle waves. "Ocean dynamics", 27 Juny 2018, p. 1-11.
dc.identifier.issn1616-7341
dc.identifier.urihttp://hdl.handle.net/2117/120458
dc.description.abstractWaves with a large incidence angle in deep water can drive a morphodynamic instability on a sandy coast whereby shoreline sand waves, cuspate forelands, and spits can emerge. This instability is related to bathymetric perturbations extending offshore in the shoaling zone. Here, we explore a different mechanism where the large incidence angle is supposed to occur at breaking and the bathymetric perturbations occur only in the surf zone. For wave incidence angles at breaking above ˜¿45°, the one-line approximation of coastal dynamics predicts an unstable shoreline. This instability (EHAWI) is scale-free and the growth rate increases without bound for decreasing wavelength. Here we use a 2DH morphodynamic model resolving surf zone instabilities to investigate whether EHAWI could approximate a real instability in nature with a characteristic length scale. Assuming very idealized conditions on the bathymetric profile and sediment transport, we find a 2DH instability mode consisting of shore-oblique up-current bars coupled to a meandering of the longshore current. This mode grows for high-angle waves, above about 30° (offshore) and the maximum growth rate occurs for the angle maximizing the angle at breaking, about 70° (offshore). The dominant wavelength is of the order of the surf zone width. Interestingly, for long sand waves, the growth rate never becomes negative and it matches very well the anti-diffusive behavior of EHAWI. This distinguishes the present instability mode from other modes found in previous studies for other bathymetric and sediment transport conditions. Thus, we conclude that EHAWI approximates a real morphodynamic instability only for quite particular conditions. In such case, a characteristic length scale of the instability emerges thanks to surf zone processes that damp short wavelengths.
dc.format.extent11 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshWaves
dc.subject.otherCoastal geomorphology
dc.subject.otherSelf-organized patterns
dc.subject.otherHigh-angle waves
dc.subject.otherShore-oblique sand bars
dc.titleA new instability mechanism related to high-angle waves
dc.typeArticle
dc.subject.lemacOnes
dc.contributor.groupUniversitat Politècnica de Catalunya. DF - Dinàmica de Fluids: formació d'estructures i aplicacions geofísiques
dc.identifier.doi10.1007/s10236-018-1186-0
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs10236-018-1186-0
dc.rights.accessOpen Access
local.identifier.drac23245605
dc.description.versionPostprint (author's final draft)
local.citation.authorFalques, A.; Kakeh, N.; Calvete, D.
local.citation.publicationNameOcean dynamics
local.citation.startingPage1
local.citation.endingPage11


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple