Show simple item record

dc.contributor.authorFedorov, Yuri
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.description.abstractThere exists an in infite hierarchy of integrable generalizations of the geodesic flow on an n -di- mensional ellipsoid.hese generalizations describe the motion of a point in the force fields of certain polynomial potentials.In the limit as one of semiaxes of the ellipsoidtends to zero,one obtains inte- grable mappings corresponding to billiards with polynomial potentials inside an (n+1)-dimensional ellipsoid. In this paper, for the first time we give explicit expressions for the ellipsoidal billiard with a quadratic (Hooke)potential,its representation in Lax form,and a theta function solution.We also indicate the generating function of the restriction of the potential billiard map to a level set of an energy type integral. The methodwe use to obtain theta function solutions is different from those applied earlier and is based on the calculation of limit values of meromorphic functions on generalized Jacobians.
dc.format.extent10 pages
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshHamiltonian systems
dc.subject.lcshHamiltonian dynamical systems
dc.subject.lcshLagrangian functions
dc.subject.otherellipsoidal billiard
dc.titleAn ellipsoidal billiard with a quadratic potential
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacLagrange, Funcions de
dc.subject.amsClassificació AMS::14 Algebraic geometry::14H Curves
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain