Show simple item record

dc.contributor.authorLlorca Piqué, Jordi
dc.contributor.authorRosell, O.
dc.contributor.authorDivins, N.J.
dc.contributor.authorLópez, E.
dc.contributor.authorRoig Costa, Maria
dc.contributor.authorTodorov Trifonov, Trifon
dc.contributor.authorRodríguez Martínez, Ángel
dc.contributor.authorGonzález de Rivera, F.
dc.contributor.authorRodríguez, L.I.
dc.contributor.authorSeco, M.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Tècniques Energètiques
dc.date.accessioned2011-03-21T10:12:50Z
dc.date.available2011-03-21T10:12:50Z
dc.date.created2010
dc.date.issued2010
dc.identifier.citationDivins, N. [et al.]. A million-channel CO-PrOx microreactor on a fingertip for fuel cell application. "Chemical engineering journal", 2010, p. 1-6.
dc.identifier.issn1385-8947
dc.identifier.urihttp://hdl.handle.net/2117/11980
dc.description.abstractA silicon micromonolith containing ca.40000 regular channels of 3.3 μm in diameter per square millimeter has been successfully functionalized with anAu/TiO2 catalyst for CO preferential oxidation(CO-PrOx) in the presence of hydrogen. The functionalization of the silicon microchannels has been accomplished by growing a SiO2 layer on the channel walls, followed by exchange with a titanium alkoxy deprecursor and decomposition intoTiO2 and, finally, by anchoring carbosilanethiol dendron protected pre-formed Au nanoparticles. Catalytically active centers at the Au–TiO2 interface have been obtained by thermal activation. With this method, an excellent homogeneity and adherence of the catalytic layer over the microchannels of the silicon micromonolith has been obtained, resulting in geometric exposed surface area values of about 4×105m2/m3. The functionalized silicon micromonolith has been tested forCO- PrOx at 363–433 Kand = 2 under H2/CO =0–20 (molar), and the results have been compared with those obtained over a conventional cordierite monolith with 400 cpsi loaded with the same catalyst. The performance of the silicon micromonolith, which converts ca. 1 NmL of CO per minute and mL of microreactor at 398 K under H2/CO ~20, is two orders of magnitude higher than that of conventional monolithic structures, suggesting that silicon micromonoliths could be particularly effective for hydrogen purification in low-temperature microfuel cells for portable applications.
dc.format.extent6 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria química
dc.subject.lcshHydrogen -- Purification
dc.subject.lcshCO-PrOx
dc.subject.lcshMacroporous silicon
dc.subject.lcshMicroreactor
dc.subject.lcshGold catalyst
dc.subject.lcshPEMFC
dc.titleA million-channel CO-PrOx microreactor on a fingertip for fuel cell application
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. MNT - Grup de Recerca en Micro i Nanotecnologies
dc.identifier.doi10.1016/j.cej.2010.07.072
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.elsevier.com/locate/cej
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac5334598
dc.description.versionPostprint (published version)
local.citation.authorDivins, N.; López, E.; Roig, M.; Todorov, T.; Rodriguez, A.; González de Rivera, F.; Rodríguez, L.; Seco, M.; Rosell, O.; Llorca, J.
local.citation.publicationNameChemical engineering journal
local.citation.startingPage1
local.citation.endingPage6


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder