A million-channel CO-PrOx microreactor on a fingertip for fuel cell application
View/Open
text complet (921,2Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/11980
Document typeArticle
Defense date2010
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
A silicon micromonolith containing ca.40000 regular channels of 3.3 μm in diameter per square millimeter has been successfully functionalized with anAu/TiO2 catalyst for CO preferential oxidation(CO-PrOx) in the presence of hydrogen. The functionalization of the silicon microchannels has been accomplished by growing a SiO2 layer on the channel walls, followed by exchange with a titanium alkoxy deprecursor and decomposition intoTiO2 and, finally, by anchoring carbosilanethiol dendron protected pre-formed Au nanoparticles. Catalytically active centers at the Au–TiO2 interface have been obtained by thermal activation. With this method, an excellent homogeneity and adherence of the catalytic layer over the microchannels of the silicon micromonolith has been obtained, resulting in geometric exposed surface area values of about 4×105m2/m3. The functionalized silicon micromonolith has been tested forCO- PrOx at 363–433 Kand = 2 under H2/CO =0–20 (molar), and the results have been compared with those obtained over a conventional cordierite monolith with 400 cpsi loaded with the same catalyst. The performance of the silicon micromonolith, which converts ca. 1 NmL of CO per minute and mL of microreactor at 398 K under H2/CO ~20, is two orders of magnitude higher than that of conventional monolithic structures, suggesting that silicon micromonoliths could be particularly effective for hydrogen purification in low-temperature microfuel cells for portable applications.
CitationDivins, N. [et al.]. A million-channel CO-PrOx microreactor on a fingertip for fuel cell application. "Chemical engineering journal", 2010, p. 1-6.
ISSN1385-8947
Publisher versionhttp://www.elsevier.com/locate/cej
Files | Description | Size | Format | View |
---|---|---|---|---|
Angel_sdarticle ... n... Chemical-Elsevier.pdf![]() | text complet | 921,2Kb | Restricted access |