Show simple item record

dc.contributor.authorDelshams Valdés, Amadeu
dc.contributor.authorGutiérrez Serrés, Pere
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-10-01T15:53:32Z
dc.date.available2007-10-01T15:53:32Z
dc.date.issued2003
dc.identifier.urihttp://hdl.handle.net/2117/1197
dc.description.abstractWe consider an example of singular or weakly hyperbolic Hamiltonian, with 3 degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The model consists of an integrable Hamiltonian possessing a $2$-dimensional hyperbolic invariant torus with fast frequencies omega/(epsilon^(1/2)) and coincident whiskers, plus a perturbation of order mu=epsilon. We choose omega as the golden vector. Our aim is to obtain asymptotic estimates for the splitting, proving the existence of transverse intersections between the perturbed whiskers for E small enough, by applying the Poincaré-Melnikov method together with a accurate control of the size of the error term. The good arithmetic properties of the golden vector allow us to prove that the splitting function has 4 simple zeros (corresponding to nondegenerate critical points of the splitting potential), giving rise to 4~transverse homoclinic orbits. More precisely, we show that a shift of these orbits occurs when E goes across some critical values, but we establish the continuation (without bifurcations) of the 4~transverse homoclinic orbits for all values of E->0.
dc.format.extent23 pages
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshHamiltonian systems
dc.subject.lcshDifferential equations
dc.subject.otherPoincaré-Melnikov method
dc.subject.otherarithmetic properties of frequencies
dc.subject.othertransverse homoclinic orbits
dc.titleExponentially small splitting for whiskered tori in Hamiltonian systems: Continuation of transverse homoclinic orbits
dc.typeArticle
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacEquacions diferencials ordinàries
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34C Qualitative theory
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain